
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS

GRADUAÇÃO EM ESTATÍSTICA

Gustavo Almeida Silva

Modelos para Séries Temporais de Contagem: implementação dos modelos
GLARMA e INGARCH no Software R

Juiz de Fora

2025

Gustavo Almeida Silva

Modelos para Séries Temporais de Contagem: implementação dos modelos
GLARMA e INGARCH no Software R

Trabalho de conclusão de curso apresentado
ao Departamento de Estatística da Universi-
dade Federal de Juiz de Fora como requisito
parcial à obtenção do grau de bacharel em
Estatística

Orientador: Professor Doutor Marcel de Toledo Vieira

Juiz de Fora

2025

Ficha catalográfica elaborada através do Modelo Latex do CDC da
UFJF com os dados fornecidos pelo(a) autor(a)

Almeida Silva, Gustavo.
Modelos para Séries Temporais de Contagem: implementação dos mo-

delos GLARMA e INGARCH no Software R / Gustavo Almeida Silva.
– 2025.

127 f. : il.

Orientador: Marcel de Toledo Vieira
Trabalho de Conclusão de Curso – Universidade Federal de Juiz de Fora,

Instituto de Ciências Exatas. Graduação em Estatística, 2025.

1. Séries Temporais. 2. Modelos Generalizados. 3. Dados de Conta-
gem. 4. Programação em R I. Vieira, Marcel, orient. II. Modelos para
Séries Temporais de Contagem: implementação dos modelos GLARMA e
INGARCH no Software R.

Gustavo Almeida Silva

Modelos para Séries Temporais de Contagem: implementação dos modelos
GLARMA e INGARCH no Software R

Trabalho de conclusão de curso apresentado
ao Departamento de Estatística da Universi-
dade Federal de Juiz de Fora como requisito
parcial à obtenção do grau de bacharel em
Estatística

Aprovada em 28 de Novembro de 2025

BANCA EXAMINADORA

Professor Doutor Marcel de Toledo Vieira - Orientador
Universidade Federal de Juiz de Fora

Prof. Dr. João Henrique Gonçalves Mazzeu
Universidade Federal de Juiz de Fora

Prof. Dr. Augusto Carvalho Souza
Universidade Federal de Juiz de Fora

AGRADECIMENTOS

Agradeço primeiramente a Deus, por me guardar, fortalecer e capacitar ao longo
de toda essa jornada.

À minha mãe, Alessandra, pelo amor, apoio e suporte incondicional, mesmo eu
estando a mais de 500 km de distância de casa. As ligações e mensagens diárias foram
essenciais para que eu não desistisse, mesmo nos dias mais difíceis. Obrigado mãe!

Ao meu pai, Márcio, por sempre me incentivar a perseguir meus sonhos e por estar
ao meu lado em todas as etapas do caminho.

Agradeço à UFJF, ao Departamento de Estatística e a todos os professores, pelo
ensino de excelência que recebi.

Expresso minha gratidão especial ao Prof. Marcel Toledo, por todo o aprendizado,
auxílio e paciência, acompanhando minha formação desde os primeiros períodos até a con-
clusão do curso. Sendo um orientador acadêmico e um mentor da vida. Minha profunda
admiração! Sem ele, certamente nada disso teria sido possível.

Agradeço também ao Prof. Augusto Souza, meu primeiro orientador de bolsa, que
despertou em mim o interesse por programação e por séries temporais;

Ao Prof. Lupércio, agradeço pelos ensinamentos que ultrapassam a sala de aula;

Ao Prof. Tiago Magalhães, registro meu agradecimento por todo período acadê-
mico, mas em especial pela orientação durante o período final da graduação.

Aos demais mestres, que tive a honra de ter sido aluno; Clécio, Camila, Ronaldo,
Ângela e Tufi. Obrigado por todo aprendizado

Aos meus queridos amigos de sala, Pedro, Arthur, Camila, Joysce e Natasha, agra-
deço por todas as conversas, risadas e momentos compartilhados. Levo comigo cada
aprendizado e alegria vivida com vocês.

Aos meus irmãos em Cristo que se tornaram irmãos de vida, Gadu e Patrick,
agradeço pelas inúmeras histórias, viagens e risadas. Minha profunda admiração por
vocês e pelo cuidado com a família e com todos ao redor. Agradeço a Cristo por nossa
amizade

Aos demais irmãos em Cristo que conheci em Juiz de Fora, Bia, João, Gabi, Laís
e Anne, agradeço de coração. Foi uma bênção compartilhar meus dias em Juiz de Fora
com vocês.

"The Good Lord made all the integers; the rest is man’s doing."
(Leopold Kronecker)

RESUMO

Os modelos de séries temporais elaborados por Box e Jenkins em 1970 constituem a
principal classe de modelos temporais atuais, os denominados modelos ARMA(Autorregressivo
de Médias Móveis). Embora esses modelos tenham se tornado populares em diversas
áreas, sua aplicação em séries de contagem, compostas por valores discretos que represen-
tam eventos específicos como número de clientes ou casos de doenças, apresentam desafios
singulares. Nesse contexto, os modelos que utilizam distribuições de probabilidade de con-
tagem, sendo as principais Poisson e Binomial Negativa, mostram-se como importantes
ferramentas para esse tipo de dados. Assim, o trabalho teve como objetivo descrever a
implementação dos modelos GLARMA (Autorregressivo de Médias Móveis Linear Gene-
ralizado) e INGARCH (Heterocededasticidade Condicional Autorregressivo Generalizado
de Valores Inteiros) no pacote do software R fableCount. Além das definições matemáticas
e estatísticas de estimação e previsão para cada modelo, os seus aspectos computacionais
também foram desenvolvidos, como os métodos numéricos de estimação, construção de
intervalos de previsão via bootstrap e métodos de validação cruzada de séries temporais.
Outra importante funcionalidade do pacote explicitada no trabalho são os algoritmos para
modelagem automatizada, divididos em: seleção automática de distribuição, seleção au-
tomática de ordens de parâmetros, e seleção automática de melhor modelo para previsão.
Para a aplicação, dados epidemiológicos foram selecionados, onde um considerável ganho
de desempenho e interpretação foi visto ao se trabalhar com os modelos temporais de
contagem comparados aos modelos ARMA e NNETAR . Ao final, métricas de utilização
do pacote e planos futuros são descritos,

Palavras-chave: Séries Temporais; Modelos Generalizados; Dados de Contagem; Progra-
mação em R.

ABSTRACT

The time series models developed by Box and Jenkins in 1970 constitute the main
class of current temporal models, the so-called ARMA (Autoregressive Moving Average)
models. Although these models are popular in many areas, their application to count-
ing series, composed of discrete values that represent specific events such as number of
customers or disease cases, presents unique challenges. In this context, models that use
counting probability distributions, the main ones being Poisson and Negative Binomial,
prove to be important tools for this type of data. Thus, the aim of the work was to describe
the implementation of the GLARMA (Generalized Linear Autoregressive Moving Average)
and INGARCH (Integer-valued Generalized Autoregressive Conditional Heteroscedastic-
ity) models in the R software package fableCount. In addition to the mathematical and
statistical definitions of estimation and forecasting for each model, computational aspects
were also developed, including numerical estimation methods, construction of prediction
intervals via bootstrap, and time series cross-validation procedures. Another important
feature of the package explained in the work are the automated modeling algorithms,
divided into: automatic distribution selection, automatic parameter order selection and
automatic model selection for forecasting. For the application, epidemiological data were
used, where a significant improvement in both forecasting performance and interpretabil-
ity was observed when using count time series models compared to ARMA and NNETAR
models. At the end, package usage metrics and future development plans are described

Keywords: Time Series; Generalized Models; Counting Data; R Programing.

LISTA DE ILUSTRAÇÕES

4 exemplos distintos de Séries Temporais . 15
Classes de modelos de séries temporais . 20
Exemplo chamada modelo INGARCH . 46
Exemplo utilização INGARCH . 47
Exemplo objeto de retorno mable INGARCH . 47
Exemplo função fitted INGARCH . 48
Exemplo utilização fitted INGARCH . 48
Exemplo retorno fitted INGARCH . 48
Exemplo função forecast INGARCH . 49
Exemplo utilização forecast INGARCH (h = 1) . 50
Exemplo retorno forecast INGARCH (h = 1) . 50
Exemplo utilização forecast INGARCH (h > 1) . 50
Exemplo retorno forecast INGARCH (h > 1) . 50
Exemplo função glance INGARCH . 51
Exemplo utilização glance INGARCH . 51
Exemplo retorno glance INGARCH . 51
Exemplo função residuals INGARCH . 52
Exemplo utilização residuals INGARCH . 52
Exemplo retorno residuals INGARCH . 52
Exemplo função tidy INGARCH . 53
Exemplo utilização tidy INGARCH . 53
Exemplo retorno tidy INGARCH . 54
Exemplo chamada modelo GLARMA . 55
Exemplo utilização GLARMA . 56
Exemplo objeto de retorno mable GLARMA . 56
Exemplo função fitted GLARMA . 57
Exemplo utilização fitted GLARMA . 57
Exemplo retorno fitted GLARMA . 58
Exemplo função forecast GLARMA . 58
Exemplo utilização forecast GLARMA (h = 1) . 59
Exemplo retorno forecast GLARMA (h = 1) . 59
Exemplo utilização forecast GLARMA (h > 1) . 59
Exemplo retorno forecast GLARMA (h > 1) . 60
Exemplo função glance GLARMA . 60
Exemplo utilização glance GLARMA . 60
Exemplo retorno glance GLARMA . 61
Exemplo função residuals GLARMA . 61

Exemplo utilização residuals GLARMA . 61
Exemplo retorno residuals GLARMA . 62
Exemplo função tidy GLARMA . 63
Exemplo utilização tidy GLARMA . 63
Exemplo retorno tidy GLARMA . 63
Logo FableCount . 65
Comparação fableCount e fable . 66
Fluxo Automizado fableCount . 68
Algoritmo de Seleção de Distribuição . 71
Matriz de Busca no Passo 1 no Método Naive-Search 74
Matriz de Busca no Passo 2 no Método Naive-Search 74
Matriz de Busca no Passo 3 no Método Naive-Search 75
Método Stepwise de Hyndman-Khandakar . 77
Método OOS para Avaliação de Modelos Temporais 83
Método Time Series Cross Validation . 84
Pipeline da construção de modelos e obtenção de métricas 91
Rank dos pacotes mais baixados no R - DataScienceMeta 106

LISTA DE TABELAS

Tabela 1 – Comparação entre os métodos de seleção de ordens (p, q) 80
Tabela 2 – Estratificação das variáveis de casos confirmados e óbitos 88
Tabela 3 – RMSE via TSCV por município estrato de casos baixos 92
Tabela 4 – RMSE via TSCV por município estrato de casos médio 92
Tabela 5 – RMSE via TSCV por município estrato de casos alto 93
Tabela 6 – RMSE via OSS por município estrato de casos baixo 94
Tabela 7 – RMSE via OSS por município estrato de casos médio 94
Tabela 8 – RMSE via OSS por município estrato de casos alto 95
Tabela 9 – RMSE via TSCV por município estrato de óbitos baixíssimo 96
Tabela 10 – RMSE via TSCV por município estrato de óbitos baixo 98
Tabela 11 – RMSE via TSCV por município estrato de óbitos medio 98
Tabela 12 – RMSE via TSCV por município estrato de óbitos alto 99
Tabela 13 – RMSE via OSS por município estrato de óbitos baixíssimo 100
Tabela 14 – RMSE via OSS por município estrato de óbitos baixo 100
Tabela 15 – RMSE via OSS por município estrato de óbitos médio 100
Tabela 16 – RMSE via OSS por município estrato de óbitos alto 101
Tabela 17 – Tempo de estimação de cada modelo (segundos) 102
Tabela 18 – Tempo de previsão de cada modelo (segundos) 102
Tabela 19 – Tempo de total (estimação + previsão) de cada modelo (segundos) . . 103

LISTA DE ABREVIATURAS E SIGLAS

MLG Modelo Linear Generalizado
ARMA Autoregressive Moving Average (Autorregressivo de Médias Móveis)
ARIMA Autoregressive Integrated Moving Average (Autorregressivo Integrado

de Médias Móveis)
GLARMA Generalized Linear Autoregressive Moving Average (Modelo Linear Ge-

neralizado Autorregressivo de Médias Móveis)
NNETAR Neural Network Autoregression (Rede Neural Autorregressiva)
ARCH Autoregressive Conditional Heteroskedasticity (Autorregressivo de He-

terocedasticidade Condicional)
GARCH Generalized Autoregressive Conditional Heteroskedasticity (Autorregres-

sivo Generalizado com Heterocedasticidade Condicional)
INGARCH Integer-valued Generalized Autoregressive Conditional Heteroskedasti-

city (Modelo de Contagem Autorregressivo Generalizado de Heteroce-
dasticidade Condicional)

FAC Função de Autocorrelação
FACP Função de Autocorrelação Parcial
AIC Akaike Information Criteria (Critério de Informação de Akaike)
BIC Bayesian Information Criteria (Critério de Informação Bayesiano)
RMSE Root Mean Squared Error (Raiz Quadrada do Erro Quadrático Médio)
MASE Mean Absolute Scaled Error (Erro Absoluto Médio Escalado)
MAPE Mean Absolute Percentage Error (Erro Percentual Absoluto Médio)
OOS Out-of-Sample (Fora da Amostra)
SRAG Síndrome Respiratória Aguda Grave
TSCV Time Series Cross-Validation (Validação Cruzada para Séries Tempo-

rais)

SUMÁRIO

1 INTRODUÇÃO . 14
1.1 SÉRIES TEMPORAIS . 14
1.2 JFSALVANDOTODOS E PREVISÕES EPIDEMIOLÓGICAS 16
1.3 DADOS E MODELOS TEMPORAIS DE CONTAGEM 19
1.4 SOFTWARE R E PACOTES ESTATÍSTICOS 23
1.5 OBJETIVOS E ORGANIZAÇÃO . 24
2 DEFINIÇÕES DOS MODELO ORIENTADOS A OBSERVAÇÕES 26
2.1 MODELOS LINEARES GENERALIZADOS 26
2.2 GLARMA - AUTORREGRESSIVO DE MÉDIA MÓVEIS LINEAR GENE-

RALIZADO . 29
2.2.1 DISTRIBUIÇÕES PARA A VARIÁVEL RESPOSTA 31
2.2.2 ESCOLHA DOS TERMOS AR E MA 32
2.2.3 CÁLCULO DE PREVISÕES . 32
2.3 INGARCH - HETEROCEDEDASTICIDADE CONDICIONAL AUTORRE-

GRESSIVO GENERALIZADO . 33
2.3.1 DISTRIBUIÇÕES PARA A VARIÁVEL RESPOSTA 34
2.3.2 ESCOLHA DOS TERMOS AR E MA 35
2.3.3 CÁLCULO DE PREVISÕES . 35
3 PACOTE . 37
3.1 PACOTES DE SÉRIES TEMPORAIS NO R 37
3.2 PIPELINE DE DADOS . 41
3.3 ESTRUTURA DO PACOTE . 44
3.4 IMPLEMENTAÇÃO INGARCH . 45
3.4.1 INGARCH() . 46
3.4.2 fitted() . 47
3.4.3 forecast() . 49
3.4.4 glance() . 51
3.4.5 residuals() . 52
3.4.6 tidy() . 53
3.5 IMPLEMENTAÇÃO GLARMA . 54
3.5.1 GLARMA() . 54
3.5.2 fitted() . 56
3.5.3 forecast() . 58
3.5.4 glance() . 60
3.5.5 residuals() . 61
3.5.6 tidy() . 62
3.6 DISPONIBILIZAÇÃO E IDENTIDADE VISUAL 64

4 ALGORITMOS PARA AUTOMATIZAÇÃO DE MODELAGEM 67
4.1 ALGORITMO PARA SELEÇÃO AUTOMÁTICA DE DISTRIBUIÇÃO 69
4.2 ALGORITMOS PARA BUSCA AUTOMÁTICA DE ORDEM DE PARÂME-

TROS . 71
4.2.1 MÉTODO NAIVE-SEARCH . 73
4.2.2 MÉTODO ARMA-BASED . 75
4.2.3 MÉTODO VIA Post-LASSO . 77
4.2.4 COMENTÁRIOS SOBRE OS MÉTODOS 79
4.3 ALGORITMO PARA BUSCA DE MELHOR PREVISÃO 80
4.3.1 MÉTRICAS DE AVALIAÇÃO . 81
4.3.2 MÉTODOS DE AVALIAÇÃO DE DESEMPENHO PREDITIVO DE SÉ-

RIES TEMPORAIS . 82
4.3.3 BUSCANDO E AVALIANDO O MELHOR MODELO 84
4.3.3.1 BUSCA DE ORDEM DE PARÂMETROS 85
4.3.3.1.1 NAIVE-SEARCH-FORECAST . 85
4.3.3.1.2 Tri-EVAL . 86
5 APLICAÇÃO E RESULTADOS 87
5.1 DADOS UTILIZADOS . 87
5.2 HIPÓTESES . 89
5.3 RESULTADOS . 90
5.3.1 CASOS CONFIRMADOS . 91
5.3.2 ÓBITOS . 96
5.3.3 AVALIAÇÃO TEMPO DE EXECUÇÃO DE CADA MODELO 101
5.4 ANÁLISE FINAL DAS HIPÓTESES 104
6 POPULARIDADE E PLANOS FUTUROS 106
7 CONCLUSÃO . 108

REFERÊNCIAS . 110
APÊNDICE A – Código utilizado para aplicação 113

14

1 INTRODUÇÃO

1.1 SÉRIES TEMPORAIS

Dentro do campo da teoria das probabilidades, um processo estocástico descreve a
evolução aleatória de um sistema ao longo do tempo, sendo representado por uma família
de variáveis aleatórias. Isso significa que, em um processo estocástico, a evolução futura
do sistema não é completamente previsível, mesmo quando a condição inicial é conhecida.
Existem múltiplas direções possíveis para a evolução do sistema, algumas vezes até mesmo
infinitas, devido à presença da aleatoriedade. Em contraste, um processo determinístico é
aquele em que a evolução futura do sistema é completamente determinada pela sua condi-
ção inicial. Não há incerteza envolvida; dado o estado inicial do sistema, é possível prever
exatamente como ele evoluirá ao longo do tempo. Essa diferença fundamental torna os
processos estocásticos ferramentas valiosas para modelar uma ampla gama de fenômenos
da vida real, onde a aleatoriedade desempenha um papel significativo, (Parzen 1961)

Dentre a classe de processos estocásticos, destacam-se as séries temporais, ampla-
mente utilizadas para modelar diversos problemas reais. Alguns exemplos incluem:

• Evolução do PIB: O Produto Interno Bruto (PIB) de um país é calculado anual-
mente e apresenta variações que dependem de inúmeros fatores econômicos e sociais.
Essas variações não são completamente previsíveis, caracterizando o PIB como um
processo estocástico.

• Movimentação do preço de uma ação: O preço de uma ação na bolsa de valores flutua
constantemente ao longo do dia. Essas flutuações dependem de uma combinação de
fatores, como notícias econômicas, desempenho da empresa, e comportamento dos
investidores, tornando a previsão dos preços futuros um processo estocástico.

• Grau de isolamento social durante a pandemia: Durante a pandemia de COVID-19,
o grau de isolamento social variou mês a mês, influenciado por medidas governamen-
tais, conscientização da população, e taxa de infecção. Essas variações apresentam
um comportamento estocástico, dado que não são completamente previsíveis.

• Número de mortos por COVID-19 a cada semana epidemiológica: O número de
mortos por COVID-19 também variou semanalmente, sendo influenciado por diver-
sos fatores como a taxa de contágio, a eficácia das medidas de controle, e o estado
do sistema de saúde. Essa variação semanal é um exemplo de processo estocástico,
já que não pode ser prevista com precisão total.

15

4 exemplos distintos de Séries Temporais

Elaborado pelo autor (2025)

De maneira teórica, uma série temporal é um conjunto de observações de uma
determinada variável feitas em períodos sucessivos de tempo, ao longo de um determi-
nado intervalo. Essas séries podem ser tratadas como amostras aleatórias ordenadas no
tempo; a ordem em que são feitas as medições é fundamental e não pode ser esquecida.
A sequência temporal das observações é crucial porque cada valor depende, em maior ou
menor grau, dos valores anteriores. Existem diferenças importantes entre séries temporais
e dados transversais (cross-section). A análise de séries temporais considera a dependên-
cia temporal entre as observações. Isso significa que os valores em diferentes instantes de
tempo estão correlacionados, e a ordem das observações é essencial para a análise. Por
exemplo, o preço de uma ação hoje pode ser influenciado pelo preço de ontem e pela
expectativa para o preço de amanhã. Em contraste, os dados transversais são coletados
em um único ponto no tempo, mas em diferentes locais ou sujeitos. Esses dados possuem
apenas dependência espacial e não linear; um valor alto de um dado não necessariamente
indica algo sobre o valor de outro dado. Por exemplo, um estudo que coleta a renda
de diferentes famílias em um país em um determinado ano trata de dados transversais.
Aqui, a ordem das observações não é importante, e cada observação é independente das
outras. Em resumo, a principal diferença reside na dependência temporal presente nas
séries temporais, onde a ordem das observações é essencial, enquanto nos dados trans-
versais, cada observação é independente das demais e a ordem das observações não é
relevante.(Miranda 2014)

Dentro os exemplos de séries temporais citados, diferentes modelos seriam sugeri-

16

dos para cada um deles, como Nowcasting para bolsa de valores e métodos sazonais para
isolameto e mortes. Apesar da variedade de modelos disponíveis para a análise e mode-
lagem desse tipo de dados, todos esses compartilham uma característica fundamental: a
correlação entre as observações ao longo do tempo.

Dentre os modelos e métodos de previsões mais conhecidos, estão aqueles iniciados
por Box e Jenkins em 1970, conhecidos como modelos Autorregressivos Integrados de
Médias Móveis, ou apenas ARIMA. Assim como uma grande parcela de outros modelos
temporais, tal classe é escrita acompanhada por seus parâmetros, onde no caso de um
ARIMA, tem-se os parâmetros Autorregressivos, Diferenciação (Integrado) e de Médias
Móveis, formando assim um ARIMA(p, d, q). Esses indicam a ordem das 3 diferentes
parcelas do modelo:

(i) Autorregressiva, que busca capturar a relação linear entre uma observação e
um número fixo de observações passadas, refletindo a influência das próprias observações
passadas na atual;

(ii) Integrado, representa o número de diferenciações necessárias para tornar a
série estacionária;

(iii) Médias Móveis, que busca modelar o erro a cada defasagem, permitindo
capturar padrões não capturados pela parcela autorregressiva.

Juntas, essas parcelas fornecem uma estrutura flexível para modelar uma ampla
gama de séries temporais. Durante o trabalho, os valores que esses parâmetros podem
assumir serão chamados de ordem. Assim como será detalhado nas seções busca auto-
mática de ordens de parâmetros

Apesar de tal modelo não ser o foco do trabalho, ele se destaca por ser a base para
outras classes de modelos temporais, onde essas que abordadas serão posteriormente.

1.2 JFSALVANDOTODOS E PREVISÕES EPIDEMIOLÓGICAS

Conforme mencionado na seção anterior, um dos principais nichos da modelagem
de séries temporais está voltado para a previsão epidemiológica. Questões como a dis-
ponibilidade de leitos hospitalares, o aumento no número de bombas de oxigênio ou a
aquisição de medicamentos exigem um planejamento logístico que depende não apenas
da observação das necessidades atuais, mas também de projeções confiáveis para o fu-
turo. Nesse contexto, um dos grandes motivadores para o trabalho e o tema estudado
foram as dificuldades encontradas na modelagem preditiva de dados epidemiológicos para
a plataforma de análise epidemiológica JF SalvandoTodos.

A Plataforma JF SalvandoTodos, fundada em março de 2020, surgiu com o objetivo
de disponibilizar dados sobre a evolução da pandemia de COVID-19 e difundir informação
de qualidade, consolidando-se como difusora científica, já que no início da pandemia pouco

17

se sabia sobre o novo coronavírus. (Prado 2022)

A plataforma permite a visualização de dados sobre a evolução da pandemia da
COVID-19 de forma gratuita, segura, simples e amigável para todos os municípios do Bra-
sil, regiões de saúde, regiões do IBGE, Unidades da Federação, para a Região Integrada
de Desenvolvimento do Distrito Federal e para o país como um todo. Ela foi idealizada
assim que a pandemia da COVID-19 foi decretada pela Organização Mundial da Saúde
e foi fundada em 29/03/2020 pelo professor Marcel de Toledo Vieira do Departamento
de Estatística da UFJF e pelo Estatístico Pedro Pacheco, então aluno do Curso de Es-
tatística e atualmente formado pela UFJF que foi o responsável pelo desenvolvimento e
programação.

A plataforma é uma aplicação web construída em RShiny, que disponibiliza os
dados epidemiológicos através de mapas e gráficos interativos

Após mais de 4 anos de seu início, além dos dados da COVID-19 a plataforma
conta hoje com dados sobre as SRAGs (Síndromes Respiratórias Agudas Graves), trazendo
número de pessoas internadas por conta de COVID, Influenza e outras vírus que atacam
o sistema respiratório.

Buscando inovações ao trazer informações relevantes a gestores de saúde, em Outu-
bro de 2023 a plataforma inaugurou sua seção de previsão epidemiológica para os dados de
SRAGs, possuindo previsão para unidade federal, grandes regiões, unidades federativas,
mesorregiões e microrregiões

A previsão na plataforma busca prever casos confirmados para um intervalo de 1
mês, possuindo estimativas pontuais e intervalares para cada uma das semanas do mês
estudado. Inicialmente, 2 modelos foram utilizados para as previsões, sendo eles o ARIMA
(Autorregressivo Integrado de Médias Móveis) e o NNETAR (Autorregressivo de Redes
Neurais). Apesar dos modelos apresentarem bom desempenho para o Brasil, regiões e suas
unidades federativas, esses apresentaram diversos problemas para previsões para macro,
microrregiões e municípios (em fase de teste)

Tais problemas compõem a seguinte lista

• Desempenho Computacional - Atualmente, o Brasil é dividido em 5 grandes
regiões, 137 mesorregiões, 558 microrregiões e 5.568 municípios. Para contemplar
todas essas hierarquias geográficas, implementamos mensalmente modelos em cada
uma delas, totalizando 6.263 unidades geográficas. Como são considerados dois mo-
delos por unidade (ARIMA e NNETAR), isso resulta na implementação de mais
de 12.500 modelos por mês na plataforma. Para a estimação desse número elevado
de modelos, a avaliação de funções de autocovariância e autocovariância parcial de
maneira manual para a escolha das ordens de cada parâmetro é inviável, e para isso
algoritmos para seleção automática de parâmetros são utilizados. Tais fatores impli-

18

cam em um tempo de execução do processo de modelagem extremamente elevado.
O modelo ARIMA apresenta um tempo de execução computacional relativamente
eficiente, completando um ciclo de estimação e previsão definido como a execução
dos modelos para as 6.263 unidades geográficas em aproximadamente 5 horas. Em
contrapartida, o modelo NNETAR demanda um tempo substancialmente maior,
podendo ultrapassar 12 horas por ciclo, a depender da complexidade e do número
de parâmetros envolvidos na rede neural. Esse valor representa um aumento de
cerca de 140% no tempo de execução em relação ao modelo ARIMA, o que pode
impactar significativamente a escalabilidade e a atualização frequente das previsões
na plataforma.

• Erros para Previsões Intervalares

- Esse problema manifesta-se principalmente em modelos do tipo ARIMA . Tais mo-
delos pressupõem que os erros seguem uma distribuição de probabilidade Gaussiana,
a qual, por definição, atribui probabilidade a todo o conjunto dos números reais, in-
clusive a valores negativos. Em contextos onde os números de casos confirmados são
baixos por exemplo, localidades cuja média semanal de casos permanece inferior a
10 , a construção de intervalos de confiança baseada nessa premissa pode resultar
em limites inferiores negativos. Em situações práticas, isso leva a interpretações
absurdas, como afirmar que um município possui 95% de chance de registrar entre
-10 e 10 casos em uma determinada semana do próximo mês, o que é incoerente,
dado que o número de casos não pode ser negativo.

O livro Fpp3 - Forecasting: Principles and Practice (3rd ed) (Hyndman e Athanasopoulos 2021)
menciona que problemas em que as previsões precisam ser restritas a um intervalo
específico [a,b] podem ser atenuados mediante o uso de transformações de variáveis.
Uma das transformações sugeridas é a função loggit escalonada, definida por:

log(x − α

β − x
), (1.1)

em que α e β são parâmetros que delimitam o intervalo permitido, ambos assu-
mindo valores inteiros. Essa transformação é de fácil implementação e impõe um
custo computacional relativamente baixo. No entanto, apesar de suas vantagens
operacionais, ela acarreta uma série de efeitos colaterais importantes.

Primeiramente, a aplicação dessa transformação induz assimetria nos intervalos de
confiança obtidos, dificultando a interpretação direta dos resultados. Além disso,
compromete-se a interpretabilidade dos parâmetros autoregressivos e de médias mó-
veis do modelo, uma vez que as transformações alteram a estrutura original das
relações temporais. Mais criticamente, na modelagem de dados epidemiológicos
como séries de casos confirmados de doenças , a utilização dessa técnica pode re-
sultar na perda das características sazonais intrínsecas ao fenômeno estudado. A

19

sazonalidade, que é fundamental para capturar padrões periódicos (por exemplo,
oscilações anuais em infecções respiratórias), pode ser distorcida ou suprimida pela
transformação, prejudicando significativamente a qualidade e a utilidade prática das
previsões.

A análise dos itens destacados evidencia as principais vantagens e limitações asso-
ciadas a cada modelo considerado. O modelo ARIMA, embora apresente um tempo de
execução reduzido tanto para a estimação quanto para a geração de previsões, mostra-se
inadequado em contextos de baixas contagens, pois produz erros intervalares que incluem
valores negativos. Por outro lado, modelos baseados em redes neurais demonstram ex-
celente desempenho preditivo, com erros significativamente reduzidos mesmo em regiões
próximas de zero; contudo, seu custo computacional é substancialmente elevado, tanto no
processo de treinamento quanto na etapa de previsão.

Diante desse cenário, tornou-se evidente a necessidade da adoção de modelos que
conciliem duas características essenciais: rápida estimação/previsão e robusto de-
sempenho em séries com valores próximos a zero. Considerando essas exigências,
foram realizados diversos estudos com o objetivo de identificar alternativas mais adequa-
das para a plataforma em desenvolvimento. A partir dessa análise criteriosa, concluiu-se
que os denominados modelos séries temporais de contagem se mostravam particular-
mente promissores, beneficiando-se de uma sólida base teórica já consolidada na literatura
estatística.

O tópico seguinte apresenta a introdução às classes de modelos de contagem sele-
cionadas, destacando suas principais propriedades e justificativas para a sua escolha.

1.3 DADOS E MODELOS TEMPORAIS DE CONTAGEM

Dados de contagem são valores inteiros, ou seja são limitados em (0, 1, 2, ..., ∞).
Seus exemplos estão presentes em diversas áreas, desde o número de casos de certa do-
ença, chegadas de clientes de um estabelecimento e a quantidade de bactérias de uma
placa de petri. Problemas de contagem surgiram na área de regressão, onde pequisado-
res ao utilizarem os modelos de regressão linear simples, que assumiam que a variável
dependente, mesmo sendo uma contagem, deveria seguir uma distribuição normal, obser-
vavam diversas quebras de suposições em relação aos resíduos desse modelo. Essa aborda-
gem mostrou-se inadequada, já que a distribuição normal não é apropriada para modelar
variáveis de contagem, que tendem a ter características diferentes, como assimetria e
excesso de zeros. Nesse contexto, surgiu a necessidade de desenvolver modelos estatísti-
cos que se adequassem melhor a esses tipos de dados. Como será descrito posteriormente,
(Nelder e Wedderburn 1972) deram início a teoria dos Modelos Lineares Generalizados, os
chamados MLGs, teoria essa que descreve a utilização de diferentes distribuições de pro-

20

babilidade para a variável resposta. Para dados de contagem, as distribuições comumente
empregadas são a Poisson e Binomial Negativa, essas 2 distribuições serão detalhadamente
estudadas ao longo do trabalho por conta de suas aplicações nos modelos temporais de
contagem

As técnicas clássicas de séries temporais, tanto nos domínios de frequência quanto
de tempo, são tipicamente baseadas em segunda ordem. Ou seja, a modelagem não vai
além dos primeiros (média) e segundos (covariância) momentos. Como resultado, modelos
Gaussianos, que são completamente caracterizados por seus dois primeiros momentos, se
tornaram populares. Eventualmente, os pesquisadores buscaram mais, percebendo que os
modelos Gaussianos frequentemente descreviam mal séries de contagem e outros valores
discretos. A modelagem de séries temporais de contagem começou seriamente no final
da década de 1970, quando extensões dos MLGs para séries temporais começaram a ser
desenvolvidos

Após aproximadamente quatro décadas de pesquisa, os dados temporais de conta-
gem têm sido abordados através de diversos conjuntos de classes e categorias de modelos.
A vasta gama de modelos e suas respectivas classes podem ocasionar complexidade na
análise. Portanto, o presente fluxograma foi elaborado com o propósito de categorizar os
principais modelos de acordo com suas respectivas classes de estudo.

Classes de modelos de séries temporais

Elaborado pelo autor (2025)

21

Nesse trabalho, 2 modelos foram estudados detalhademente, o primeiro é o GLARMA,
abreviação de Generalized Linear Autoregressive Moving Average ou em por-
tuguês Modelo Autorregressivo de Médias Móveis Linear Generalizado. Já o
segundo é o INGARCH. abreviação de Integer-valued Generalized Autoregressive
Conditional Heteroscedasticity ou em português Modelo de Heterocedasticidade
Condicional Autorregressivo Generalizado de Valores Inteiros.

Tal destaque se dá pela sua implementação no pacote desenvolvido, tópico que será
abordado posteriormente. Para evitar confusões de siglas, deve-se citar a existência do
modelo IGARCH (Heterocedasticidade Condicional Autorregressivo Integrado), modelo
esse que possui um parâmetro de integração indicando o número de diferenciações aplicada
aos dados. Apesar de sua semelhança na nomenclatura e forma estatística com o modelo
INGARCH, tal modelo não foi abordado nesse trabalho

Os modelos GLARMA e INGARCH são classificados como ’Orientados a Obser-
vações’ dentre o grupo de modelos Generalizados. Fokianos define esse grupo como tendo
uma das estruturas mais comuns e flexíveis para análise de séries temporais. Por exemplo,
modelos ARMA e ARIMA podem ser representados como um modelo de espaço de esta-
dos linear, para o qual algoritmos de filtragem de Kalman, suavização e previsão podem
ser implementados para calcular verossimilhanças Gaussianas, previsão de 1 passo, erros
quadráticos médios de previsão e valores suavizados dos estados. Para séries temporais
de contagens, o modelo de espaço de estados linear não é diretamente aplicável, pois a
variável resposta assume valores discretos; uma forma mais geral do modelo de estado
generalizado padrão é necessária. Por exemplo, um modelo de regressão Poisson assume

Xt|αt ∼ Poisson(expαt),

Onde Poisson(λ) representa uma função densidade de probabilidade Poisson de
média λ. Além da Poisson, outras distribuições de contagem podem ser utilizadas nesses
modelos. Para isso, a distribuição deve pertencer a família exponencial de 1 parâmetro,
tendo sua f.d.p fatorada em

P (Xt = xt | αt) = exp {φ (xt) + αtxt − A (αt)} , xt = 0, 1, 2, . . . , (1.2)

onde ϕ(.) é uma função e A(α) é uma constante normalizadora que garante que a
f.d.p resulte na unidade: A(α) = log

(∑∞
j=0 exp{φ(j) + αj}

)
Assim, outras distribuições comumente utilizadas são a Binomial Negativa e a

Poisson Generalizada

Como descrito em (Davis et al. 2021), simples generalizações dos modelos autorre-
gressivos são os modelos lineares e log-lineares. O modelo Poisson Autorregressivo Linear
segue a forma

22

Xt | Ft−1 ∼ Poisson (λt) , λt = d +
p∑

j=1
bjXt−j

onde Ft−1 = σ(Xt, Xt−1, ...), d e [bj]pj=1 são não negativos (essa característica
garante que a média λt do processo seja não negativa)

Já o modelo log-linear tem forma análoga, como

vt = d +
p∑

j=1
bj log (Xt−j + 1) ,

como descrito em (?) e (?) a função de ligação é dada por vt = log(λt), e
diferente do modelo linear d e [bj]pj=1 podem ser positivos ou negativos, porém devem
satisfazer as condições de estacionariedade

Apesar da fácil generalização, Fokianos detalha que tais modelos possuem funções
de autocovariâncias semelhantes ao modelos AR(p) e ARCH(p), (Autorregressivo e Hete-
rocedasticidade Condicional Autorregressivo), onde essas se caracterizam como de ”curta
memória”. Buscando modelos que contornam esse paradigma, (Bollerslev 1986) foi o pri-
meiro a especificar o modelo GARCH (Heterocedastidicade Condicional Autorregressivo
Generalizado), onde após sua primeira definição diversos autores ajudaram a desenvolver
sua teoria para dados de contagem, como (Rydberg 2000), (Streett 2000), (Heinen 2003),
(10), (13) , tendo inicialmente a seguinte estrutura

Xt | Ft−1 ∼ Poisson (λt) , λt = d +
p∑

i=1
aiλt−i +

q∑
j=1

bjXt−j

Dado a natureza de valores do conjunto numérico dos inteiros que o modelo possui
ao se utilizar a distribuição Poisson, ele também é chamado de INGARCH (Heterocedas-
tidicade Condicional Autorregressivo Generalizado de Valores Inteiros).

Analogamente, o modelo log-linear tem a seguinte estrutura

vt = d +
p∑

i=1
aivt−i +

q∑
j=1

bj log (Xt−j + 1) ,

com propriedades correspondente ao modelo linear. Não há restrições de sinal para
os coeficientes e covariáveis podem ser facilmente incluidas, como exposto por (Fokianos 2011)

Demais tópicos, como diferentes funções de ligação são propostas por (Tjøstheim 2012),
assim como métodos de estimação via quasi-verossimilhança discutidas por (13) e

(Christou e Fokianos 2014). Tais tópicos estão além do escopo desse trabalho, mas
se mostram extremamentes relevantes no contexto estudado

Já para a família de modelos GLARMA, (Davis e Liu 2012) declara essa como
uma das mais flexíveis e fáceis de estimação dentre os modelos do grupo ’Orientados

23

a Observação e Parâmetros’. O modelo base é construído a partir de {et}, onde o erro,
assumindo a famiília exponencial de 1 parâmetro para as observações, gera uma sequência
martingale de média 0 e variância unitária, definida por

et = XT − B(αt)√
Bť(αt)

Como uma sequência martingale é não-correlacionada, tem-se que et é uma ruído
branco de média 0 e variância unitária. A partir desse definição, um modelo GLARMA(p,q)
é construído baseado em um modelo ARMA(p,q) via recursão de {et}.

De maneira específica, dado {Wt} um modelo ARMA(p,q) inversível, ele segue a
seguinte forma

Wt =
p∑

i=1
ϕiαt−i +

q∑
j=1

θjet−j + et,

onde αt é chamado como o melhor preditor linear de Wt dado um passado infinito
{Ws, s < t}

1.4 SOFTWARE R E PACOTES ESTATÍSTICOS

Durante o trabalho será descrito como os modelos temporais explicitados no tópico
anterior foram implementados em um pacote de funções, onde que para isso o software R
foi escolhido.

”O R é um ambiente de software livre para computação estatística e gráficos.
Compila e roda em uma ampla variedade de plataformas UNIX, Windows e MacOS”
(R Project, 2021). Atualmente, porém, o R se tornou muito mais do que um simples
ambiente de software estatístico e se estabeleceu como uma das principais linguagens
de programação de alto nível com potencial para lidar com problemas de modelagem
estatística, contando com uma série de ferramentas modernas que permitem inclusive o
desenvolvimento de aplicativos para a internet e manipulação de grandes bases de dados.
O uso do R tem se dado principalmente por estatísticos, matemáticos, programadores
e cientistas contemporâneos no geral. As próprias universidades do Brasil e do mundo
têm se esforçado para ensinar e incentivar seus alunos a trabalharem com a ferramenta
e o motivo desta operação tem sido a necessidade computacional no desenvolvimento de
estudos científicos. O resultado deste necessário esforço é que cada vez mais novos pacotes
capazes de lidarem com problemas cada vez mais complexos estão sendo desenvolvidos
em um intervalo de tempo cada vez menor, possibilitando que os demais usuários da
comunidade usufruam deste material e apliquem em suas respectivas áreas de interesse
(Pacheco 2021)

24

A criação de um pacote passa por diversas etapas, indo da sua motivação inicial,
diferentes maneiras de estruturação de código até a forma de disponibilização do produto
final para o público. Assim, para seu desenvolvimento, o pacote construído neste trabalho
se baseou fortemente na filosofia exposta por (Wickham e Bryan 2023) no livro R Packa-
ges (2e) ”Este livro defende nossa filosofia de desenvolvimento de pacotes: tudo que pode
ser automatizado, deve ser automatizado. Faça o mínimo possível manualmente. Faça o
máximo possível com funções.”

A escrita de uma função não é apenas um processo de generalização, é também um
processo de automatização, e portanto toda sua estrutura deve ser analisada com cuidado.
Seja o número de argumentos que ela deve ter, a ordem no qual esses argumentos estão
dispostos, como também seu objeto de retorno, todos os passos desse algoritmo deve ser
minuciosamente dissecado buscando facilitar sua utilização por parte do usuário. Para
isso a forma de escrita e organizações de funções teve como fundamento o conceito de
programação funcional descrito por (Wickham 2014) e por (Pacheco 2021)

Assim este trabalho buscou ir além das definições matemáticas dos modelos imple-
mentados, ao também apresentar o pensamento computacional empregado na construção
do pacote.

1.5 OBJETIVOS E ORGANIZAÇÃO

O presente trabalho está estruturado de forma a conduzir o leitor desde a funda-
mentação matemática dos modelos de séries temporais de contagem até a aplicação prática
em dados reais, passando por aspectos de implementação computacional, automatização
de processos e perspectivas futuras do pacote desenvolvido.

No Capítulo 2, são apresentadas as bases matemáticas e estatísticas dos modelos
GLARMA e INGARCH . Este capítulo estabelece os fundamentos teóricos necessários
para compreender a estrutura e as propriedades desses modelos, fornecendo a sustentação
formal para as etapas posteriores.

O Capítulo 3 discute o papel dos pacotes estatísticos no ambiente R, com destaque
para aqueles voltados à modelagem de séries temporais. Nesse contexto, é introduzido
o pacote fableCount, desenvolvido no âmbito deste trabalho, detalhando sua estrutura
interna, a implementação computacional dos modelos GLARMA e INGARCH, bem como
sua identidade visual. Esse capítulo conecta a teoria do Capítulo 2 ao processo de tradução
prática em código.

No Capítulo 4, são abordados os métodos de modelagem automatizada, divididos
em três eixos: a seleção automática de distribuições, a seleção automática de ordens de
parâmetros e a busca pelo melhor modelo com foco em previsão. São discutidas, também,
as métricas de avaliação de desempenho, e os métodos de avaliação para modelos com

25

foco em previsão, como o Time Series Cross Validation e o Out-of-Sample, que orientam
a seleção do modelo preditivo mais adequado.

O Capítulo 5 traz a aplicação empírica do pacote desenvolvido em dados epidemio-
lógicos da COVID-19. Nessa etapa, demonstra-se o desempenho dos modelos de contagem
frente a alternativas clássicas como ARIMA e NNETAR, evidenciando ganhos relevantes
em termos de acurácia e desempenho computacional, se alinhando com as hipóteses de-
senvolvidas durante o capitulo

Já o Capítulo 6 apresenta métricas de utilização do pacote, número de usuários
ativos e demais indicadores de impacto, além de discutir os planos futuros para sua
expansão e aprimoramento. Essa seção conecta os resultados obtidos à relevância prática
e à sustentabilidade do projeto.

Por fim, o Capítulo 7 sintetiza as principais contribuições do trabalho, destacando
avanços, limitações e potenciais desdobramentos para pesquisas futuras no campo das
séries temporais de contagem.

26

2 DEFINIÇÕES DOS MODELO ORIENTADOS A OBSERVAÇÕES

Conforme detalhado na seção 1.3, o pacote desenvolvido concentrou-se exclusiva-
mente na implementação dos modelos classificados como ”Orientados a Observações”. A
implementação desses modelos é subdividida em duas partes distintas: a definição ma-
temática e a implementação computacional. Dessa forma, nesta seção, foram delineados
os conceitos fundamentais relacionados às definições matemáticas e estatísticas de cada
modelo. Posteriormente, na seção 3, intitulada ”Pacote”, foram abordadas as questões
relacionadas à implementação computacional, fornecendo detalhes sobre como os modelos
foram traduzidos em código e integrados ao pacote.

Uma importante consideração deve ser fixada sobre como os nomes dos modelo
foram utilizados. Ao nos referirmos aos modelos de séries temporais, estamos abordando
uma classe abrangente de modelos. Tomando como exemplo a classe ARMA, é possível
identificar suas diversas variações como: modelos sazonais, modelos com parâmetros de di-
ferenciação e aqueles que incluem covariáveis, denominados SARMA, ARIMA e ARMAX,
respectivamente. Adicionalmente, é possível combinar diferentes modelos dentro de cada
classe, como é o caso do SARIMAX, um modelo Sazonal Autorregressivo Integrado de
Médias Móveis com Variáveis Exógenas, que é uma fusão dos três tipos mencionados
anteriormente. Com o intuito de simplificar a comunicação e facilitar a compreensão do
trabalho, os modelos GLARMA e INGARCH serão sempre referidos por seus nomes
originais, enquanto suas variações serão acompanhadas de sufixos, indicando
a presença de parcelas sazonais ou covariáveis. Essa abordagem visa aprimorar a
clareza e a consistência na exposição dos conceitos e resultados apresentados neste estudo.

2.1 MODELOS LINEARES GENERALIZADOS

A classe dos modelos orientados a observações são originados daqueles como classi-
ficados como Modelos Lineares Generalizados, onde os modelos de cadeia oculta de Mar-
kov formam ou outro subgrupo. Os Modelos Lineares Generalizados (MLG) propostos
por (Nelder e Wedderburn 1972) são uma extensão dos modelos lineares clássicos, onde
o trabalho proposto pelos autores buscou especificar outras distribuições para a variável
resposta

Os modelos lineares usuais assumem que sua variável resposta assume distribuição
Normal, com parâmetros de locação e escala constantes, tal suposição se mostra robusta
em diversos contextos, onde assumir tal distribuição facilita interpretações do modelo,
testes de significância e certas propriedades exclusivas de uma distribuição Gaussiana.
Porém, em contextos como dados de contagem, binários, e limitados na reta real, utili-
zar tal modelo se mostra inviável e errôneo. Assim, os MLGs surgem como ferramenta
para esses casos. Nesse contexto, a teoria desenvolvida por (Nelder e Wedderburn 1972)

27

especificou demais distribuições de probabilidade para a váriavel resposta.

Dado uma amostra com n observações independentes, XXX uma matriz com p + 1
colunas e y um vetor de observações amostrado de Y , são definidos os 3 componentes de
um MLG

• Y tem distribuição probabilística como membro da Família Exponencial de distri-
buições, com uma função de probabilidade ou função densidade de probabilidade,
para variáveis aleatórias discretas e contínuas respectivamente

P (Xt = xt | αt) = exp {φ (xt) + αtxt − A (αt)} , xt = 0, 1, 2, . . . , (2.1)

onde φ(.) é uma função e A(α) é uma constante normalizadora que garante que a
f.d.p resulte na unidade: A(α) = log

(∑∞
j=0 exp{φ(j) + αj}

)

(yi) = µi = b (2.2)

V ar(yi) = σ2 (2.3)

• A matriz XXX de covariáveis relacionadas no chamado preditor linear na forma

ηi = XT
i βXT
i βXT
i β (2.4)

• Uma Função de Ligação monótona (inversível) e diferenciável g(.) , que liga o pre-
ditor linear ηi à média de Y onde escrevemos

g(µi) = ηi (2.5)

Para variáveis de contagem, as distribuições Poisson e Binomial Negativa são comulmente
utilizadas. A distribuição de Poisson é definida para uma variável aleatória discreta Y que
representa o número de eventos ocorrendo em um intervalo fixo. A função de probabilidade
é dada por

fY (y|λ) = λy exp−λ

y!
(2.6)

onde λ é o parâmetro da taxa que representa o número médio de eventos no
intervalo, y é o número de eventos. A distribuição Poisson possui os primeiro e segundo
momentos iguais, ou seja

E(Y) = V ar(Y) = λ (2.7)

28

Em sua forma na família exponencial, a distribuição pode ser fatorada em

fY (y|λ) = exp (y log(λ) − λ + (−log y!)) (2.8)

Sua função de verossilhança e log-verossimulhança são dadas por

L(λ, ỹ) =
n∑

j=1
exp(−λ) 1

yj!
λyj (2.9)

l(λ, ỹ) = −nλ −
n∑

j=1
ln(yj!) + ln(λ)

n∑
j=1

yj (2.10)

Já a Binomial Negativa é uma distribuição de probabilidade discreta que pode ser
usada para modelar o número de falhas até que um número fixo de sucessos seja alcan-
çado em uma sequência de experimentos de Bernoulli independentes. Esta distribuição
é frequentemente utilizada em situações onde os dados apresentam sobredispersão, ou
seja, quando a variância é maior do que a média, algo que não pode ser adequadamente
modelado pela distribuição de Poisson. Sua função de probabilidade é dada por

fY (y|r, p) =
(

r + y − 1
y

)
pr(1 − p)y (2.11)

onde y representa o número de falhas até que ocorra o r-ésimo sucesso, r representa
o número de sucessos desejados e p é a probabilidade de sucesso de cada experimento
Bernoulli

Diferentemente da distribuição Poisson, a Binomial Negativa possui esperança e
variância distintas

E(Y) = r(1 − p)
p

(2.12)

V ar(Y) = r(1 − p)
p2 (2.13)

Em sua forma na família exponencial, a distribuição pode ser fatorada em

fY (y|r, p) =
(

r + y − 1
y

)
exp(y ln(p) + r ln(1 − p)) (2.14)

Sua função de verossimilhança e log-verossimilhança são dadas por

L(r, p|y) =
n∑

j=1

(
r + yi − 1

yi

)
pr(1 − p)y

i (2.15)

29

l(r, p|y) =
n∑

j=1
ln
(

r + yi − 1
yi

)
+ r ln(p) + yi ln(1 − p) (2.16)

Normalmente, a função identidade e a função log são utilizadas como função de
ligação para ambas as distribuições descritas

Utilizando função identidade, a média é diretamente modelada pelo preditor linear,
dado por

µ = η =
d∑

j=1
xjβd = x′x′x′β (2.17)

Já o modelo com função de ligação log tem-se a seguinte estrutura

log(µ) = η =
d∑

j=1
xjβd = x′x′x′β (2.18)

Com os MLGs devidamente introduzidos, podemos então nos aprofundar nos 2
modelos que são o foco do trabalho: GLARMA e INGARCH

2.2 GLARMA - AUTORREGRESSIVO DE MÉDIA MÓVEIS LINEAR GENERALI-
ZADO

Dado uma série temporal dada como YYY t : t ∈ N e um vetor k-dimensional de de
covariáveis dado como XXX t : t ∈ N. Denota-se Ft = {Ys : s < t, xs : s ≤ t} como a informa-
ção em tempo anterior para a variável resposta e a informação em um tempo anterior e
presente para as covariáveis. Em geral a distribuição condicional de Yt dado Ft é dado
através da sua fatoração na forma da família exponencial

f (yt | Wt) = exp {ytWt − atb (Wt) + ct} , (2.19)

onde at e ct são sequências de constantes possivelmente dependendo das observa-
ções yt. A informação de Ft é resumida na variável Wt

Como descrito por (Benjamin e Stasinopoulos 1998), modelos orientados a obser-
vações podem assumir diversas formas. O trabalho teve como foco a utilização para o
modelo GLARMA onde a utilização do vetor de estados em (2.1) é forma geral

Wt = xT
t β + Ot + Zt. (2.20)

Além dos parâmetros da regressão β, o termo Ot pode ser incluído como offset
do modelo. O offset é um termo utilizado para ajustar o modelo em diferenças conhe-
cidas entre observações, permitindo a modelagem de taxas relativas sem estimar novos
parâmetros.

30

Para a dependência temporal descrito no processo de estado de (2.20) de Wt,
o termo Zt é introduzido no processo de estado como uma recursão de médias móveis
autorregressivas, de forma

Zt =
p∑

i=1
ϕi(Zt−i + et−i) +

q∑
i=1

θiet−i, (2.21)

no qual, seus resíduos preditivos são definidos como

et = Yt − µt

νt

, (2.22)

tendo νt como um termo chamado de função normalizadora ou função de escala.
Esse termo se refere a uma transformação que ajusta ou redimensiona os resíduos predi-
tivos com base em uma medida de dispersão, como o desvio padrão.

É importante destacar que esses tipos de resíduos são uma sequência martingale,
e portanto possuem média 0 e são independentes. Quando νt é ajustado ao desvio padrão
condicional de Yt e et também possui variância unitária, temos que esses são um ruído
branco fracamente estacionários (Dunsmuir e Scott 2015)

Além da forma descrita em (2.21), Zt pode ser escrito via combinações lineares
dos resíduos preditivos et descritos em (2.22), isto é,

Zt =
∞∑

j=1
γjet−j, (2.23)

Para a parametrização da parcela de peso de média móveis infinitas γj na equação,
configurar que sejam representados como os coeficientes em um filtro autorregressivo de
médias móveis. Dado por

∞∑
j=1

γjζ
j = θ(ζ)/ϕ(ζ) − 1 (2.24)

onde ϕ(ζ) = 1 − ϕ1ζ − ... − ϕpζp e θ(ζ) = 1 + θ1ζ + ... + θqζ
q são os respectivos

polinomios autorregressivos e de médias móveis do filtro ARMA.

Como descrito em (6), ao se definir {Zt} dessa maneira, pode se enxergar ele como
o melhor predito linear de um processo ARMA estacionário e invertível, com ruído dado
pela sequência de {et} de desvios padronizados das respostas de contagem a partir de sua
média condicional, dado os valores passados para a variável resposta e valores passados e
atuais das covariáveis.

Continuando as definições do modelo a respeito de seus resíduos preditivos, dado
por et = Yt−µt

νt
. Seja ν(Wt) uma função de escala, é possível construir diversos tipos de

resíduos a partir dessa definição

31

Função de Escala de Pearson

Seja νt = νP,t, onde

νP,t = [atb(WT)]0.5

Tal função de escala resulta no resíduo do tipo Pearson

Função de Escala Score ype

Se baseia no trabalho de (5), onde se realiza a substituição do desvio padrão
condicional pela variância condicional, dado por

νS,t = atb(WT)

Função de Escala Identidade

Se baseia no trabalho de (Wang e Li 2011), que remete as características de um
modelo BARMA (ARMA Binário), onde não se considera uma função de escala, dado por

νI,t = 1

Cada tipo de função de escala e consequentemente de resíduos, possuem resulta-
dos distintos nos modelos GLARMA Poisson e GLARMA Binomial Negativa, antes de
citarmos tais diferenças, tais distribuições para respostas devem ser explicitadas

2.2.1 DISTRIBUIÇÕES PARA A VARIÁVEL RESPOSTA

O pacote desenvolvido oferece ao usuário 2 tipos de função distribuição de probabi-
lidade para o usuário utilizar para a variável resposta, sendo elas distribuição de Poisson
e distribuição Binomial Negativa

Para a distribuição de Poisson, tem-se que αt = 1, b(Wt) = exp(Wt), ct = −log(yt)
e a função de ligação utilizada é a canônica dado por g(µ) = ln(µ)

Para a distribuição Binomial Negativa, tem-se que µt = exp(Wt), onde a seguinte
parametrização é utilizada no pacote

f (yt | Wt, α) = Γ (α + yt)
Γ(α)Γ (yt + 1)

[
α

α + µt

]α [
µt

α + µt

]yt

. (2.25)

É importante destacar que µt = exp(Wt) e que σ2
t = µ + µ2/α. Para α ∼ ∞ a

distribuição Binomial Negativa converge para uma Poisson. Note que, se α é conhecido,
tal densidade pode ser fatorada em uma pertencente a família exponencial uni-paramétrica

Tais opções são disponibilizadas a depender do grau de dispersão dos dados tra-
balhados. A distribuição Poisson é mais simples de se trabalhar por conta de apresentar

32

apenas 1 parâmetro, dado por λt = exp(Wt), onde portanto a estimação de apenas 1
parâmetro é necessária. Apesar de tal comodidade, tal distribuição assume igualdade de
média e variância, no qual tem-se que λt = µt = σ2

t . Assim para dados que apresentam
o fenômeno de sobredispersão, tal distribuição apresenta perda de desempenho. Nesse
contexto a utilização da distribuição Binomial Negativa se mostra mais interessante, ao
possuir funções distintas para sua esperança e variância.

A escolha da melhor distribuição será novamente abordade no tópico 4 - ’Algorit-
mos para Modelagem Automatizada’.

2.2.2 ESCOLHA DOS TERMOS AR E MA

A escolha das defasagens adequadas para os componentes AR e MA no modelo
GLARMA costuma ser consideravelmente mais difícil do que em séries Gaussianas. Nesses
casos, os resíduos obtidos a partir de ajustes por mínimos quadrados podem fornecer
informações bastante úteis sobre a estrutura de dependência serial, especialmente por
meio das funções de autocorrelação e autocorrelação parcial.

No entanto, ao contrário dos resíduos da regressão por mínimos quadrados que
frequentemente ajudam a identificar a estrutura do modelo de dependência serial em
respostas contínuas , no caso de respostas com valores discretos, os resíduos do ajuste de
um modelo GLM geralmente não fornecem boas orientações para a escolha dos parâmetros
p e q necessários para especificar o modelo GLARMA. Isso é ainda mais evidente quando
a dependência serial é fraca ou moderada.

Assim como a escolha da melhor distribuição para o modelo, a escolha do número
de defasagens adequadas, tanto para o termo AR quanto para o MA, serão discutidos
novamente no tópico 4 ’Algoritmos para Modelagem Automatizada’.

2.2.3 CÁLCULO DE PREVISÕES

Em comparação com modelos ARMA e ARMAX, os métodos para previsão de
valores futuros cálculados a partir de um GLARMA possuem um complexidade adicional
dado a estrutura condicional do modelo.

Para previsões um passo a frente (one-step ahead forecast) devemos considerar a
especificação condicional de Yt. No entanto, para previsões de múltiplos passos à frente,
essa formulação condicional implica que todos os possíveis caminhos futuros da amostra
ao longo do horizonte de previsão precisam ser considerados, seja teoricamente ou por
meio de simulação.

Para previsões um passo à frente, denotadas por Yt+1, onde n é o índice máximo
para as amostras de treinamento do modelo, temos a seguinte estrutura

33

Ẑt+1 =
p∑

j=1
ϕ̂j

(
Ẑt+1−j + êt+1−j

)
+

q∑
j=1

θ̂j êt+1−j. (2.26)

Note que Ẑt+1 pode ser estimado usando apenas os valores de Ẑt e de êt

Já para o caso de previsões múltiplos passos à frente, temos a seguinte estrutura

f(yn+L | Fn) =
∑
yn+1

· · ·
∑

yn+L−1

L∏
j=1

f(Yn+j | Fn+j)) (2.27)

Onde definimos Fn como uma função que possui o conjunto de informações uti-
lizadas no modelo como: valores regressores xt, ..., xt+j bem como os valores passados
da própria série temporal yt+1, ..., yt+j−1. Os termos que estão dentro do somatório irão
crescer de maneira exponencial dado o número de previsões a frente L

Apesar de apresentar uma complexidade alta para estimação e previsão em um
ambiente computacional, o framework glarma utilizado no ambiente R, encapsula todas
as funções necessárias para estimação, previsões e os métodos computacionais de otimiza-
ção para ambos os objetivos. Facilitando assim, a implementação desse modelo no novo
framework criado fablecount

2.3 INGARCH - HETEROCEDEDASTICIDADE CONDICIONAL AUTORREGRES-
SIVO GENERALIZADO

Dada uma série temporal dada como YYY t : t ∈ N e um vetor r-dimensional de cova-
riáveis dado como XXX t : t ∈ N, estamos interessados em modelar a média condicional do
processo dado por E(Yt|Ft−1) = λt. Os modelos tem forma geral dado por

g (λt) = β0 +
p∑

k=1
βkg̃ (Yt−ik

) +
q∑

ℓ=1
αℓg (λt−jℓ

) + η⊤X t, (2.28)

onde g : R → R+ é uma função de ligação e g̃ : N0 → R é uma função de
transformação. ηηη = (η1, η2, ..., ηr)T é o vetor de efeitos das covariáveis XXX t. Na teoria dos
MLGs e sua termologia, chamamos νt = g(λt) de preditor linear.

Para a escrita de um modelo INGARCH(p, q), defini-se os parametros autorre-
gressivos p e de médias móveis q. A ordem p refere-se ao número de defasagens das
observações utilizadas como autorregresivas Yt−1, Yt−2, Yt−p, já a ordem q refere-se ao nú-
mero de defasagens das médias condicionais λt−1, λt−2, λt−q. Além disso, um INGARCH
com sazonalidade estocástica é escrito como INGARCH(p, q)(P, Q)[m], onde P representa
a ordem autorregressiva sazonal, Q a ordem de médias móveis sazonais e m o indice de
sazonalidade

Um exemplo pode ser escrito de um modelo INGARCH(p, q) com função de ligação
e tranformação identidade, g(x) = g̃(x) = x, e efeito das covariáveis igual a 0, ηηη = 000

34

λt = β0 +
p∑

k=1
βkYt−k +

q∑
ℓ=1

αℓλt−ℓ (2.29)

Por si só, sem especificação de distribuição para Yt, o modelo acima é descrito como
um GARCH(p, q), na qual a partir da especificação de uma distribuição de contagem como
Poisson ou Binomial Negativa, tal modelo passa a se chamar GARCH de Valores Inteiros,
ou apenas INGARCH. Em casos de especificação da distribuição Poisson, tal modelo é
chamado por alguns autores de Autorregressive Conditional Poisson(ACP)

Além da função identidade, a função de ligação log é extremamente utilizada para
ajustes de modelos log-lineares. Assim, dado uma função de ligação g(x) = log(x), uma
função de transformação g̃(x) = log(x + 1), temos o seguinte modelo INGARCH(p, q)

g (λt) = β0 +
p∑

k=1
βk log (Yt−k + 1) +

q∑
ℓ=1

αℓνt−ℓ. (2.30)

Além das escolhas para as funções de ligação e transformação, é necessário a
utilização de alguma distribuição de probabilidade de contagem, onde no próximo tópico
os modelos com distribuição Poisson(λt) e Binomial Negativa(λt, θ) foram estudados

2.3.1 DISTRIBUIÇÕES PARA A VARIÁVEL RESPOSTA

Assim como o modelo GLARMA, o modelo INGARCH utiliza como base para sua
estimação as distribuições de probabilidade Poisson ou Binomial Negativa

A distribuição de Poisson é comumente usada para modelar a taxa de eventos
aleatórios que ocorrem em algum intervalo de tempo fixo. Se assumirmos que λ denota
a taxa de chegadas, então a distribuição da variável aleatória Y , que denota o número
de chegadas em um intervalo de tempo fixo, segue a distribuição de Poisson com função
densidade de probabilidade (Fokianos 2012)

Para modelos paramétricos de contagem como o caso do INGARCH, é necessário
a utilização de alguma distribuição de contagem. Assim, nesse contexto, a distribuição
mais simples.

O modelo faz a seguinte suposição:

P (Yt = y | Ft−1) = λy
t exp (−λt)

y!
, y = 0, 1, . . . (2.31)

Além disso, dado uma variável aleatória X ∼ Poisson(λ), tem-se que

E(X) = V ar(X) = λ.

Esse resultado segue para os casos temporais, onde portanto:

E(Yt|Ft−1) = V ar(Yt|Ft−1) = λt.

35

Para a estimação do modelo com função de ligação e função de transformação
identidade, o espaço paramétrico com covariáveis é dado por

Θ =
{

θ ∈ Rp+q+r+1 : β0 > 0, β1, . . . , βp, α1, . . . , αq, η1, . . . , ηr ⩾ 0,
p∑

k=1
βk +

q∑
ℓ=1

αℓ < 1
}

(2.32)

Já para modelos log-lineares, o espaço paramétrico com covariáveis é dado por

Θ =
{

θ ∈ Rp+q+r+1 : |β1| , . . . , |βp| , |α1| , . . . , |αq| < 1,

∣∣∣∣∣
p∑

k=1
βk +

q∑
ℓ=1

αℓ

∣∣∣∣∣ < 1
}

(2.33)

A utilização dessa distribuição torna a estimação do modelo menos complexo,
dado que apenas 1 parâmetro (λt) deve ser estimado. Porém em casos no qual a variância
é significativamente maior que a média, fenômeno esse chamado de sobredispersão, a
utilização da distribuição Binomial Negativa pode trazer ganhos ao modelo

A distribuição Binomial Negativa permite que a variância condicional do modelo
seja maior que média λt. Como definido por (Christou e Fokianos 2014), o modelo assume
que Yt | Ft−1 ∼ NegBin(λt, ϕ), onde a distribuição possui 2 parâmetros: o primeiro λt é
média e o segundo ϕ modela a dispersão. Isso é

P (Yt = y | Ft−1) = Γ(ϕ + y)
Γ(y + 1)Γ(ϕ)

(
ϕ

ϕ + λt

)ϕ (
λt

ϕ + λt

)y

, y = 0, 1, . . . (2.34)

Para esse caso, V ar(Yt | Ft−1), ou seja, a variância condicional aumenta quadra-
ticamente em relação a λt. Vale destacar que a distribuição Poisson é um caso onde
ϕ → ∞

2.3.2 ESCOLHA DOS TERMOS AR E MA

Como já descrito para o modelo GLARMA, encontrar o valor ótimo para as ordens
autorregressivas e de médias móveis não é uma tarefa trivial.

Buscando contornar as dificuldades ligados a esse tema o tópico 4 ”Algoritmos
para Modelagem Automatizada” apresenta métodos que facilitam a escolha dos valores
das ordens autorregressivas e de médias móveis

2.3.3 CÁLCULO DE PREVISÕES

Em relação ao erro quadrático médio, para previsões 1 passo a frente, o melhor
estimador Ŷn+1 dado Fn é dado pela média condicional de λn+1, como descrito em

36

g (λt) = β0 +
p∑

k=1
βk log (Yt−k + 1) +

q∑
ℓ=1

αℓνt−ℓ. (2.35)

Já para previsões múltiplos passos a frentes, previsões essas chamadas de ”pre-
visões h passos a frente”, onde h representa qual é o horizonte de previsão, o melhor
estimador Ŷn+h é obtido através da chamada de previsões 1 passo a frente recursivamente,
onde os valores desconhecidos Yn+1, . . . , Yn+h−1 são obtidos por suas respectivas previsões
1 passo a frente. Vale destacar que a distribuição de previsões h passos a frente não
é conhecida de forma analítica, mas pode pode ser aproximada por métodos numéricos.
Nesse trabalho utilizamos um bootstrap paramétrico para isso, permitindo a construção
de intervalos de confiança para as estimativas calculadas

O pacote construído encapsula o pacote tscount para estimação dos modelos e
cálculo de previsões. Dessa forma, reciclamos métodos numéricos de difícil construção que
já foram desenvolvidos e focamos em na melhor forma de disponibilizar esses métodos para
os usuários.

37

3 PACOTE

3.1 PACOTES DE SÉRIES TEMPORAIS NO R

Durante as décadas de 1960 e 1970, os principais modelos estatísticos de séries
temporais foram desenvolvidos. Diferentemente dos métodos anteriores aos anos 1960,
como o método de Delphi, os modelos de Suavização Exponencial e Autorregressivo de
Médias Móveis exigem um processo intensivo de avaliação das funções de autocovariância,
seleção da ordem dos parâmetros e estimação desses parâmetros por meio de métodos
como máxima verossimilhança, mínimos quadrados, entre outros.

Consequentemente, esses métodos apresentam dificuldades de aplicação sem o au-
xílio de um computador. Os primeiros softwares a oferecerem funcionalidades para análise
de séries temporais foram o Autoreg, que lançou suas funções em 1960, o SPSS, que as
introduziu a partir de 1968, e o SAS, em 1970.

Embora pioneiros em seus respectivos campos, esses softwares não conseguiram
ganhar grande popularidade além do ambiente comercial, principalmente devido à sua
disponibilidade exclusiva por meio de assinatura ou compra de licenças. Essa abordagem
acabou afastando estudantes autônomos, acadêmicos e aqueles sem acesso a recursos
financeiros para investir nessas ferramentas. No entanto, com o avanço da tecnologia e o
surgimento da comunidade de código aberto, novas soluções surgiram, oferecendo acesso
gratuito a ferramentas poderosas de análise de séries temporais. Linguagens como R,
por exemplo, rapidamente se tornaram populares devido à sua gratuidade, vasta gama de
pacotes e suporte ativo da comunidade. O R oferece uma ampla variedade de funções para
modelagem, análise e visualização de séries temporais, além de permitir maior flexibilidade
e customização de análises conforme as necessidades do usuário. Sua comunidade ativa e
colaborativa também proporciona suporte e recursos adicionais, tornando-o uma escolha
atraente para estudantes, acadêmicos e profissionais em todo o mundo.

Com sua primeira versão lançada em 1993, o R se tornou uma das linguagens
de programação mais populares para análise de dados, impulsionado em grande parte
por sua natureza open-source. Essa característica permite que qualquer pessoa contribua
para o desenvolvimento da linguagem e crie novos pacotes para atender a necessidades
específicas. A comunidade de usuários do R é extremamente ativa, o que resulta em
uma vasta gama de pacotes disponíveis no Comprehensive R Archive Network (CRAN),
repositório oficial de pacotes da linguagem. Abrangendo desde a manipulação de dados
e visualização até modelagem estatística avançada, aprendizado de máquina e ciência
de dados, sua versatilidade, combinada com a sua natureza open-source, a torna uma
ferramenta indispensável para pesquisadores, cientistas de dados e analistas de negócios
em todo o mundo.

O R oferece uma vasta gama de pacotes especializados em análise de séries tempo-

38

rais, cada um com suas próprias características e funcionalidades. Entre os mais populares,
destacam-se o forecast, conhecido por sua ampla variedade de modelos, o zoo, que além
de séries temporais, oferece ferramentas para manipulação de objetos indexados no tempo,
e o TSA, voltado para análises estatísticas mais tradicionais.

O forecast se caracteriza como o pacote mais famoso para o nicho de séries tem-
porais, possuindo maior número de downloads dentre os pacotes dessa área, ultrapassando
a marca de mais de 20 milhões. Desenvolvido por Rob Hyndman, George Athanasopoulos
e outros, o pacote trás modelos como ARIMA, ETS, ARIFMA, BATS, TBATS e outros.
Apesar de sua popularidade, o pacote lançado em 2008 não era capaz de suportar mé-
todos para modelos hierárquicos, de regressão dinâmica e métodos de reconciliação. Ao
capturar a estrutura hierárquica presente em muitos conjuntos de dados, como vendas por
produto e região, os modelos hierárquicos permitem que informações de níveis superiores
sejam utilizadas para melhorar as previsões em níveis inferiores. A regressão dinâmica,
por sua vez, modela a evolução das relações entre variáveis ao longo do tempo, capturando
efeitos de defasagem, cointegração e não estacionariedade. Já os métodos de reconciliação
garantem a consistência entre as previsões agregadas e seus componentes, melhorando
a precisão e a interpretabilidade dos resultados. Em conjunto, essas técnicas permitem
analisar dados mais complexos, obter previsões mais precisas e facilitar a compreensão
das relações hierárquicas entre as variáveis.

Além disso, ele utilizava uma forma de escrita de código que, embora fosse eficaz
na época de seu lançamento, tornou-se datada em comparação aos padrões modernos de
programação. Hoje, um grande número de pacotes em R adota o estilo de programação
tidy, que prioriza a legibilidade, a consistência e a eficiência do código.

Sendo um movimento iniciado em 2014 a partir do artigo Tidy Data de Hadley
Wickham, o estilo tidy é caracterizado por uma abordagem mais organizada e intuitiva
na manipulação e análise de dados. Ele utiliza funções que operam de maneira declarativa,
permitindo que o código seja lido quase como uma sequência de instruções em linguagem
natural. Um dos aspectos centrais do estilo tidy é o uso do operador pipe (%>% ou |>),
que facilita o encadeamento de funções, tornando o fluxo de trabalho mais linear e fácil
de seguir.

Ainda, o tidy promove a ideia de ”tidy data”, onde os dados são organizados de
forma padronizada: cada variável em uma coluna, cada observação em uma linha, e cada
tipo de unidade observacional em uma tabela separada. Esse formato simplifica tanto
a análise quanto a comunicação dos resultados, tornando o código mais compreensível e
menos propenso a erros.

O estilo tidy se tornou o padrão de fato para muitos usuários de R, sendo ampla-
mente adotado por pacotes populares no ecossistema tidyverse, como dplyr, tidyr e
ggplot2. Esse movimento reflete uma evolução na prática de programação, onde a cla-

39

reza, a reprodutibilidade e a eficiência são priorizadas, facilitando o trabalho colaborativo
e a manutenção do código ao longo do tempo.

O termo tidyverse foi criado em 2014, quando essa maneira de se organizar dados
e criar funções iniciou seu processo de consolidação. Desde de lá, inúmeros pacotes foram
desenvolvidos, atigindo outros nichos além da área de organização de dados, como os
campos de amostragem e modelagem. Enquanto os pacotes base do tidyverse têm como
objetivo a organização e manipulação de dados estruturados, duas outras bibliotecas se
destacam

O pacote srvyr no R é uma extensão do pacote dplyr, projetada especificamente
para facilitar a manipulação e análise de dados de pesquisas (survey data) com planos
amostrais complexos. Ele permite que os usuários realizem análises de pesquisas usando a
sintaxe familiar do tidyverse, o que torna mais intuitivo e eficiente trabalhar com dados
de pesquisas que envolvem pesos amostrais, estratificação e conglomerados.

Já o pacote tidymodels é uma coleção de pacotes que fornece ferramentas para
a modelagem estatística e aprendizado de máquina de uma maneira coesa, utilizando o
estilo de programação tidyverse. Ele oferece uma abordagem unificada e consistente
para todo o ciclo de vida de modelagem, desde a pré-processamento de dados, criação e
ajuste de modelos, tunagem de hiperparâmetros, até a avaliação e seleção de modelos.

Apesar dessa ampla cobertura, ainda havia uma lacuna significativa no universo de
pacotes tidy: a organização e modelagem de dados de séries temporais. Dados temporais
apresentam características específicas que exigem abordagens e ferramentas especializadas
para sua análise adequada, algo que não estava plenamente contemplado pelos pacotes
existentes.

A seguinte frase descrita por Wickham é citada por Hyndman como a motivação
inicial para a descontinuidade do Forecast em vista do desenvolvimento de um novo con-
junto de pacotes de organização e modelagem de séries temporais que seriam construídos
utilizando a metodologia tidy, ”Tidy datasets are all alike, but every messy dataset is
messy in its own way.” (Wickham 2014). Hyndman cita a especificidade ao se trabalhar
com dados temporais

Dados estruturados não temporais possuem uma estrutura padrão em que cada
linha é uma observação, que pode ser um indivíduo, país, lugar e assim por diante, e
cada coluna representa uma variável dessa observação estudada. Por sua vez, dados
temporais trazem um desafio único. Em dados temporais, cada linha representa uma
unidade temporal (dia, mês, ano, etc.), e cada coluna pode representar uma variável.
Esse tipo de dados requerem técnicas especiais para lidar com dependências temporais,
tendências e sazonalidades que não estão presentes em dados estruturados convencionais.
A manipulação e análise de dados temporais exigem ferramentas que possam manejar
essas características intrínsecas do tempo, como a autocorrelação e a variabilidade ao

40

longo do tempo.

A manipulação de dados temporais apresenta desafios únicos que vão além das
operações básicas de limpeza e transformação de dados. A conversão de formatos de data
(por exemplo, de ano/mês/dia para dia/mês/ano), a imputação de valores faltantes em
datas específicas e a unificação de dados de diferentes fontes com frequências distintas
exigem um conjunto característico de ferramentas. Enquanto o tidyverse oferece uma
gama robusta de funções para manipulação de dados em geral, a natureza sequencial e
temporal dos dados exige soluções mais especializadas. A complexidade inerente a esses
problemas torna os pacotes do tidyverse insuficientes para lidar com as nuances da análise
de séries temporais

A transformação de datas, por exemplo, pode parecer trivial, mas possui desa-
fios únicos. Diferentes países e regiões utilizam formatos de data distintos (dia/mês/ano,
mês/dia/ano, ano/mês/dia). A não conversão para um formato padrão pode levar a in-
terpretações incorretas. Além disso ao trabalhar com dados de diferentes localidades, é
crucial considerar as diferenças de fuso horário. A não conversão para um fuso horário
comum pode gerar inconsistências nos dados, assim como a mudança para o horário de
verão em algumas regiões pode introduzir descontinuidades nos dados se não for devida-
mente considerada. Ainda, a inclusão ou exclusão de um dia extra a cada quatro anos,
característica do ano bissexto, impacta diretamente a precisão de cálculos envolvendo
datas. A falta de ajuste para o ano bissexto pode gerar descontinuidades e dificultar a
identificação de padrões sazonais.

Assim como acontece com dados não temporais, séries temporais também podem
apresentar valores faltantes. No entanto, enquanto técnicas de imputação relativamente
simples, como a substituição por média ou mediana, podem ser adequadas para dados não
temporais, as séries temporais exigem abordagens mais sofisticadas devido à sua natureza
sequencial e dependência temporal. Valores faltantes em séries temporais representam
um desafio maior porque as imputações imprecisas podem distorcer padrões temporais
fundamentais, como tendências, ciclos e sazonalidade. Por exemplo, substituir um valor
faltante em uma série temporal com a média geral pode ignorar variações sazonais impor-
tantes, levando a ajustes sazonais errôneos e, consequentemente, a previsões ou análises
imprecisas.

Além disso, a imputação inadequada pode introduzir viés nos modelos preditivos,
afetando negativamente a capacidade do modelo de capturar a verdadeira estrutura dos
dados. Técnicas mais complexas, como interpolação linear, suavização exponencial, ou até
mesmo modelos preditivos específicos para séries temporais, como ARIMA ou modelos de
estado espaço, são frequentemente necessárias para preservar a integridade dos padrões
temporais.

Para preencher essa lacuna, Rob Hyndman, George Athanasopoulos e outros co-

41

laboradores desenvolveram, no final de 2020, o conjunto de pacotes do tidyverts. Este
novo conjunto de ferramentas foi projetado para integrar o estilo de programação do
tidyverse com os modelos avançados e robustos do pacote forecast. O tidyverts pro-
porciona uma solução moderna e eficiente para a análise de séries temporais, alinhando-se
às práticas e padrões do tidyverse e promovendo um fluxo de trabalho mais coeso e
intuitivo para os usuários.

A biblioteca tem como principais pacotes.

• tsibble: Para limpeza a manipulação de bases de dados de séries temporais.

• fable: Para modelagem de séries, oferecendo os modelos ARIMA e suas variações
sazonais e com covariáveis, ETS, NNETAR, método de Croston, VAR, método
Theta.

• fabletools: Oferece ferramentas para construção de modelos para o fable

• feasts: Para extração de informações e estatísticas dos modelos ajustados e de
previsões.

Cada pacote citado foi construído para o desenvolvimento de um pipeline de mo-
delagem e sua fácil escalabilidade

Dado a facilidade de construção de um processo de modelagem, com ótimo desem-
penho computacional, tal biblioteca de pacotes foi utilizada na plataforma de análises
estatísticas JFSalvandoTodos para a seção de previsão de casos confirmados das SRAGs.
Apesar da facilidade da construção de um ciclo de limpeza, modelagem e previsão de
valores, notou-se rapidamente que o pacote de modelagem fable apresentava uma lacuna
ao se trabalhar com dados de contagem. Como já citado anteriormente, a utilização do
modelo ARIMA e NNETAR apresentaram diferentes complexidades e obstáculos, indo
desde tempo de execução computacional de modelagem extremamente alto, até previsões
de valores negativos

Dado a necessidade de se trabalhar com modelos específicos para dados de conta-
gem, iniciou-se a ideia da criação de um pacote para esse fim, denominado posteriormente
de fableCount

Antes de destacar a criação do pacote, devemos introduzir o conceito de pipeline
de dados e como o tidyverts e mais especificamente os pacotes fable e fableCount se
localizam em um processo de modelagem

3.2 PIPELINE DE DADOS

Os pipelines de dados têm suas raízes em conceitos de engenharia de software, onde
um ”pipeline” refere-se a uma série de etapas interconectadas que processam dados de

42

entrada para produzir uma saída desejada. Esses conceitos foram adaptados para o campo
da ciência de dados à medida que os pesquisadores começaram a lidar com conjuntos de
dados cada vez maiores e mais complexos, exigindo abordagens sistemáticas e escaláveis
para processamento e análise de dados.

Dentre o contexto de séries temporais, um pipeline pode ser divido em três grandes
processos

(i) Limpeza e Organização de dados: Esta etapa envolve o preparo dos dados
para análise. Isso pode incluir a detecção e tratamento de valores ausentes, a remoção
de outliers, a correção de erros de digitação e a padronização de formatos de dados.
Para séries temporais, também é importante garantir que os dados estejam organizados
corretamente no tempo, ou seja, em ordem cronológica, para que a análise subsequente
possa ser realizada adequadamente.

(ii) Análise e Engenharia de Características: Nessa fase, são extraídas e
criadas características (features) relevantes a partir dos dados brutos para melhorar a
capacidade preditiva dos modelos. Em séries temporais, isso pode envolver a criação de
novas variáveis, como médias móveis, diferenças entre valores consecutivos, tendências, sa-
zonalidades e outras transformações que possam capturar padrões temporais importantes.
A análise exploratória de dados também é crucial nesta etapa para compreender melhor
as relações e características dos dados.

(i) Modelagem e Previsão: A última etapa consiste na construção e ajuste de
modelos para inferência ou previsão que serão utilizados para interpretação de parâmetros
ou previsão de valores futuros. Isso pode incluir a aplicação de modelos estatísticos
tradicionais, como ARIMA e ETS, ou técnicas mais modernas de aprendizado de máquina,
como redes neurais feedforward (FFNN), tendo como exemplo o modelo NNETAR, redes
neurais recorrentes (RNNs) e as Long Short-Term Memory (LSTM). A avaliação dos
modelos é realizada através de métricas de desempenho, como os critérios de informação
para modelos focados em inferência e métricos baseadas no erro como RMSE, MAE,
MAPE para modelos com foco em previsão.

O seguinte fluxograma foi elaborado para exemplificar um pipeline de modelagem
utilizando o framework do tidyverts

43

O pacote construído e descrito nesse trabalho, fableCount, se localiza na etapa
ocupada pelo pacote fable, tendo como foco a disponibilização de modelos temporais
de contagem e algoritmos para a automatização de tal processo. Ele surge como uma
extensão ao fable, onde sua versão base não apresenta modelos para dados de contagem

Além do fableCount, outros pacotes foram desenvolvidos como extensão ao fable
base e que valem serem mencionados.

O primeiro foi o fable.prophet, pacote que tem como objetivo disponibilizar o
modelo prophet para usuários do tidyverts. O prophet foi um modelo de séries temporais
criado pelo Facebook (agora META), e tem como principal característica a capacidade de
modelar sazonalidade complexa em conjunto de dados de alta dimensionalidade ao mesmo
tempo que se mostra robusto a valores faltantes.

O segundo foi o fable.binary que trás modelos para séries temporais binárias. Ele

44

possui 2 modelos principais: logístico e NNET. O modelo logístico temporal se assemelha
ao modelo logístico padrão, vindo da teoria de modelos lineares generalizados, sendo uma
extensão a dados temporais. Já o NNET é um modelo baseado em redes neurais, mais
especificamente em uma rede feedforward com apenas uma camada oculta, chamada de
Single Layer Perceptron (SLP)

Assim o pacote construído e detalhado nesse trabalho é a terceira extensão ao
fable. Apesar dos pacotes descritos serem distintos entre si, onde cada um possui sua
própria gama de modelos e nicho específico, a construção de cada um é feita com base
nas especificações do tidyverts, utilizando a biblioteca fabletools para construção de
pacotes de extensão ao fable. Assim, todos eles possuem a mesma estrutura de utilização
em código R e podem ser implementados em um mesmo pipeline, facilitando comparação
entre modelos, como a busca por aquele de melhor qualidade de ajuste, melhores valores
previstos e melhores tempos de execução computacional

3.3 ESTRUTURA DO PACOTE

Um pacote em R segue uma estrutura base, que inclui espaços distintos dedicados
ao armazenamento de funções, conjuntos de dados e informações específicas do pacote.

Dentro do escopo das funções de um pacote, existem dois grupos principais: as
funções externas, que são disponibilizadas para uso direto pelo usuário, e as funções
internas, que são utilizadas exclusivamente dentro do pacote e não estão acessíveis ao
usuário.

Como será detalhado nos próximos tópicos, a principal funcionalidade do pacote
é a disponibilização de métodos automatizados para a seleção de modelos. As funções
responsáveis pela execução desses métodos automatizados são funções internas, não expor-
tadas diretamente para o usuário. Em vez disso, o acesso a esses métodos é feito através
de uma função principal de modelagem, que contém gatilhos para acionar as funções
automatizadas conforme necessário.

Essa explicação é crucial, pois o número de funções descritas neste trabalho é
significativamente menor do que o total de funções disponíveis internamente no pacote.
O foco está nas funções acessíveis ao usuário, embora uma complexa infraestrutura de
funções internas suporte e automatize os processos de modelagem.

As seções ”Implementação INGARCH” e ”Implementação GLARMA” descrevem
detalhadamente as funções exportadas ao usuário que estão associadas a cada um desses
modelos. No capítulo subsequente, ”Algoritmos para Automatização de Modelagem”, é
apresentada a construção das funções responsáveis pela seleção automática de distribui-
ções, ordens de parâmetros, e modelos de previsão. Por serem de uso interno, essas funções
não são exportadas para o usuário e, portanto, não podem ser acessadas diretamente em

45

um arquivo ”.R”.

Além disso, para uma melhor compreensão das próximas seções e capítulos, é
necessário explicar certos tipos de objetos do R que são específicos para as etapas de
organização e modelagem de séries temporais. Esses objetos, devido ao seu nicho de
aplicação, não são comumente utilizados por usuários gerais do R, mas são essenciais
para o trabalho com séries temporais.

• tibble - Se autodenomina como a versão aperfeiçoada de uma data.frame, e é o
objeto tabular padrão do Tidyverse

• tsibble - É um Time Series Tibble, ou um Tibble para Séries Temporais. Possui a
estrutura padrão de um tibble, trazendo maiores funcionalidades para manipulação
de datas

• mable - É um Model Table, ou uma Tabela de Modelos. Esse termo refere-se a uma
estrutura que armazena diferentes modelos ajustados em um formato de tabela,
facilitando a comparação e a análise dos modelos em um único quadro de dados.
Representa o objeto de retorno ao se utilizar a função INGARCH() e GLARMA()

3.4 IMPLEMENTAÇÃO INGARCH

Para implementação da estimação e produção de previsões, o pacote tscount é
utilizado. O pacote construído oferece 6 funções aos usuários relacionadas ao modelo
INGARCH

São elas:

• INGARCH() - Função base para estimação do modelo INGARCH

• fitted() - Extrai os valores estimados de um modelo construído

• forecast() - Estima valores para um intervalo de tempo futuro, ou seja, previsão
de novos valores

• glance() - Retorna as métricas erro-padrão, log-verossimilhança, AIC e BIC do
modelo construído

• residuals() - Extrai os resíduos de um modelo construído

• tidy() - Retorna os coeficientes do modelo, assim como suas métricas de variância,
e intervalo de confiança

Cada função possui um objeto de entrada específico e um objeto de retorno cor-
respondente. Além disso, algumas funções incluem argumentos adicionais que precisam

46

ser explicados em detalhes para garantir um uso adequado do pacote. Para oferecer um
entendimento mais aprofundado, cada função foi detalhadamente descrita nos tópicos a
seguir.

3.4.1 INGARCH()

É a função base para estimação de modelo INGARCH.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

Exemplo chamada modelo INGARCH

Elaborado pelo autor (2025)

Possui os seguintes argumentos.

• formula - Argumento que define as ordens autorregressiva e de médias móveis do
modelo. Esse argumento possui 3 parcelas distintas.

pq - Define os termos autorregressivas e de médias móveis não sazonais, pode ser
definido pelo usuário, ou se for omitido, o algoritmo de seleção automática de pa-
râmetros é acionado. O algoritmo de seleção automática de parâmetros ajustará o
melhor modelo com base no critério de informação

PQ - Define os termos autoregressivos e médias móveis sazonais, pode ser definido
pelo usuário, ou se for omitido, o algoritmo de seleção automática de parâmetros é
acionado (gatilho padrão aciona o algoritmo de selação ARMA-Based). Tal algoritmo
será detalhado no próximo capítulo

xreg - Define variáveis exógenas para utilização no modelo.

• ic - Representa o critério de informação que deve ser utilizado se o algoritmo de se-
leção automática de parâmetros for acionado, possuindo as opções ”AIC” ou ”BIC”

• link - Função de ligação que deve ser utilizada para o modelo generalizado, pos-
suindo as opções ”identity” ou ”log”

• distr - Função de densidade de probabilidade que deve ser utilizada para o modelo
generalizado, possuindo as opções ”poisson” ou ”nbinom” (binomial negativa). Se
esse argumento for omitido, o algoritmo de seleção automática de distribuição é
acionado

47

• algorithm - Define qual o algoritmo de seleção automática de ordem de parâme-
tros vai ser utilizado no caso das ordens ”pq” serem omitidas. Possui 3 opções,
”naive_search”, ”arma_based” e ”LASSO”.

Cada método de seleção automática de distribuição e seleção automática de or-
dens de parâmetros será aprofundado no capítulo ”Algoritmos para Automatização de
Modelagem”

A função tem como objeto de retorno um ”mabble”

Um exemplo considerando um modelo INGARCH(2,1) é dado na seguinte imagem.
O modelo construído foi chamado de exem_model_ingarch e foi utilizado novamente
para exemplificações nas demais funções. Os dados utilizados para sua estimação foram
simulados a partir de um modelo INGARCH(2,1) com distribuição Poisson com tamanho
amostral igual a 100

Exemplo utilização INGARCH

Elaborado pelo autor (2025)

O objeto de retorno é um mable tendo a seguinte estrutura

Exemplo objeto de retorno mable INGARCH

Elaborado pelo autor (2025)

3.4.2 fitted()

Função que tem como objetivo extrair os valores estimados de um modelo cons-
truído e possui os seguintes argumentos

Em um fluxo de modelagem, a função é chamada da seguinte maneira

48

Exemplo função fitted INGARCH

Elaborado pelo autor (2025)

• object - Este é o argumento principal da função e refere-se ao modelo de série
temporal que foi previamente ajustado.

• ... - Argumentos adicionais que podem ser passados para métodos específicos de
subclasses. Geralmente, esses argumentos não são necessários para o uso básico da
função.

Utilizando novamente o modelo construido, exem_model_ingarch, que dado
um número de observações igual a 100, teve um intervalo temporal de estudo definido
como 1901 a 2000 (100 anos), a função fitted apresenta a seguinte estrutura de retorno

Exemplo utilização fitted INGARCH

Elaborado pelo autor (2025)

Exemplo retorno fitted INGARCH

Elaborado pelo autor (2025)

49

3.4.3 forecast()

Função para o cálculo de previsões. Para previsões de 1 passo à frente, ele retorna
uma previsão paramétrica, baseada na distribuição especificada pelo parâmetro ’distr’.
Para previsões de múltiplos passos à frente, a distribuição não é conhecida analiticamente,
então é utilizado um bootstrap paramétrico.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

Exemplo função forecast INGARCH

Elaborado pelo autor (2025)

Possui os seguintes argumentos.

• object - Este é o argumento principal da função e refere-se ao modelo de série
temporal que foi previamente ajustado.

• h - Controla o horizonte de previsão. É um valor numérico que especifica o número
de passos à frente para os quais as previsões serão geradas

• new_data - Se o modelo construído possuir variáveis exógenas, essas devem tem
seus valores futuros passados através desse argumento .

• ... - Argumentos adicionais que podem ser passados para métodos específicos de
subclasses. Geralmente, esses argumentos não são necessários para o uso básico da
função.

A função tem como objeto de retorno um tsibble, contando com 4 colunas: a
primeira é o nome do modelo, a segunda é a data que do forecast, a terceira é a distribuição
da previsão para aquele momento do tempo (a distribuição é utilizada para construção
de intervalos de confiança) e a quarta coluna representa a média da previsão

Utilizando novamente o modelo construido, exem_model_ingarch.

É importante que a função forecast pode ter 2 tipos de retorno dependendo do
horizonte de previsão escolhido para o modelo INGARCH. Para previsão de 1 passo a
frente, a distribuição escolhida para o modelo é utilizada.

Já para previsões possuindo um horizonte de previsão maior que 1, a distribuição
analítica não é conhecida e portanto um bootstrap paramétrico é utilizado para a previsão
de valores

Para um horizonte de previsão de 1 passo a frente, a função possui o seguinte
comportamento

50

Exemplo utilização forecast INGARCH (h = 1)

Elaborado pelo autor (2025)

Exemplo retorno forecast INGARCH (h = 1)

Elaborado pelo autor (2025)

Já para um horizonte igual a 10 (sendo portanto maior que 1), a função apresenta
a seguinte estrutura

Exemplo utilização forecast INGARCH (h > 1)

Elaborado pelo autor (2025)

Exemplo retorno forecast INGARCH (h > 1)

Elaborado pelo autor (2025)

É possivel ver as diferenças entre os objetos de retorno. Enquanto o primeiro
possui no coluna ”x”, a distribuição utilizada para estimação do modelo, onde no exemplo
utilizado é uma Poisson, a segunda previsão apresenta na coluna ”x” uma distribuição
baseada em um bootstrap paramétrico de 1000 valores

51

3.4.4 glance()

Função que retorna uma tabela com as métricas erro-padrão, log-verossimilhança,
AIC e BIC do modelo construído.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

Exemplo função glance INGARCH

Elaborado pelo autor (2025)

Possuindo os seguintes argumentos

• x - Este é o argumento principal da função e refere-se ao modelo de série temporal
que foi previamente ajustado.

• ... - Argumentos adicionais que podem ser passados para métodos específicos de
subclasses. Geralmente, esses argumentos não são necessários para o uso básico da
função.

O erro-padrão é calculado a partir do estimador não viciado dado por
∑T

t=0(êt)2

n−k+1

Utilizando novamente o modelo construido, exem_model_ingarch, a função
apresenta a seguinte estrutura de retorno

Exemplo utilização glance INGARCH

Elaborado pelo autor (2025)

Exemplo retorno glance INGARCH

Elaborado pelo autor (2025)

52

Exemplo função residuals INGARCH

Elaborado pelo autor (2025)

3.4.5 residuals()

Função que extrai os resíduos do modelo construído.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

Possui apenas um argumento

• object - Este é o argumento principal da função e refere-se ao modelo de série
temporal que foi previamente ajustado.

Utilizando novamente o modelo construido, exem_model_ingarch, a função
apresenta a seguinte estrutura de retorno

Exemplo utilização residuals INGARCH

Elaborado pelo autor (2025)

Exemplo retorno residuals INGARCH

Elaborado pelo autor (2025)

53

3.4.6 tidy()

Função para extrair métricas sobre os coeficientes. A função retorna a estima-
tiva pontual, desvio-padrão e intervalo de confiança. O intervalo de confiança pode ser
calculado através da aproximação via distribuição Normal ou via Bootstrap

Por padrão, os erros padrão e os intervalos de confiança são baseados em uma
aproximação normal do estimador de máxima verossimilhança. Os erros padrão são as
raízes quadradas dos elementos diagonais da inversa da matriz de informação. Já para
o erro padrão para o coeficiente de sobredispersão ”sigmasq” quando a distribuição
Binomial Negativa é utilizada, como não há uma aproximação analítica, seu erro padrão
e seu intervalo de confiança são definidos como NA.

Ela possui os seguintes argumentos

• object - Este é o argumento principal da função e refere-se ao modelo de série
temporal que foi previamente ajustado.

• type - Refere-se ao a forma na qual o intervalo e confiança deve ser calculado.
”normalaproxx” se refere a uma aproximação via distribuição Normal e ”boot” se
refere a método de bootstrap paramétrico

• ... - Argumentos adicionais que podem ser passados para métodos específicos de
subclasses. Geralmente, esses argumentos não são necessários para o uso básico da
função.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

Exemplo função tidy INGARCH

Elaborado pelo autor (2025)

Utilizando novamente o modelo construido, exem_model_ingarch, a função
apresenta a seguinte estrutura de retorno

Exemplo utilização tidy INGARCH

Elaborado pelo autor (2025)

54

Exemplo retorno tidy INGARCH

Elaborado pelo autor (2025)

3.5 IMPLEMENTAÇÃO GLARMA

Assim como as função do modelo INGARCH, todas a funções do modelo GLARMA
foram explicitadas. A estrutura de funções para a utilização por parte do usuário é a
mesma do INGARCH, porém alguns parâmetros das funções são distintos, dado a forma
de estimação de cada modelo

Temos as seguintes funções elas:

• GLARMA() - Função base para estimação do modelo GLARMA

• fitted() - Extrai os valores estimados de um modelo construído

• forecast() - Estima valores para um intervalo de tempo futuro, ou seja, previsão
de novos valores

• glance() - Retorna as métricas erro-padrão, log-verossimilhança, AIC e BIC do
modelo construído

• residuals() - Extrai os resíduos de um modelo construído

• tidy() - Retorna os coeficientes do modelo, assim como suas métricas de variância,
e intervalo de confiança

3.5.1 GLARMA()

É a função base para estimação de modelo GLARMA.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

55

Exemplo chamada modelo GLARMA

Elaborado pelo autor (2025)

Possui os seguintes argumentos.

• formula - Argumento que define as ordens autorregressiva e de médias móveis do
modelo. Esse argumento possui 3 parcelas distintas.

pq - Define os termos autorregressivas e de médias móveis não sazonais, pode ser
definido pelo usuário, ou se for omitido, o algoritmo de seleção automática de pa-
râmetros é acionado. O algoritmo de seleção automática de parâmetros ajustará o
melhor modelo com base no critério de informação

PQ - Define os termos autorregressivos e médias móveis sazonais, pode ser definido
pelo usuário, ou se for omitido, o algoritmo de seleção automática de parâmetros
é acionado (somente para o algoritmo ’arma_to_glarma’). O algoritmo de seleção
automática de parâmetros vai se ajustar ao melhor modelo baseado no critério de
informação

xreg - Define variáveis exógenas para utilização no modelo.

• ic - Representa o critério de informação que deve ser utilizado se o algoritmo de se-
leção automática de parâmetros for acionado, possuindo as opções ”AIC” ou ”BIC”

• distr - Função de densidade de probabilidade que deve ser utilizada para o modelo
generalizado, possuindo as opções ”poisson” ou ”nbinom”(binomial negativa). Se
esse argumento for omitido, o algoritmo de seleção automática de distribuição é
utilizado

• method - Método iterativo que deve ser utilizado para a estimação do modelo.
Possui as opções ”FS” (Fisher scoring) e ”NR” (Newton-Raphson)

• algorithm - Define qual o algoritmo de seleção automática de ordem de parâ-
metros vai ser utilizado no caso das ordens pq serem omitidas. Possui 2 opções,
”naive_search”, ”arma_based”.

• residuals - Tipo de resíduo para ser utilizado (como definido na seção de definição
matemática do modelo). Possui as opções ”Pearson” e ”Score”

56

Cada método de seleção automática de distribuição e seleção automática de or-
dens de parâmetros será aprofundado no capítulo ”Algoritmos para Automatização de
Modelagem”

A função tem como objeto de retorno um ”mabble”

Um exemplo considerando um modelo GLARMA(1,0) é dado na seguinte imagem.
O modelo construído foi chamado de exem_model_glarma e foi utilizado novamente
para exemplificações nas demais funções. Os dados utilizados para sua estimação foram
simulados a partir de um modelo GLARMA(1,0) com tamanho amostral igual a 100

Exemplo utilização GLARMA

Elaborado pelo autor (2025)

Exemplo objeto de retorno mable GLARMA

Elaborado pelo autor (2025)

3.5.2 fitted()

Função que tem como objetivo extrair os valores estimados de um modelo cons-
truído e possui os seguintes argumentos

Em um fluxo de modelagem, a função é chamada da seguinte maneira

57

Exemplo função fitted GLARMA

Elaborado pelo autor (2025)

• object - Este é o argumento principal da função e refere-se ao modelo de série
temporal que foi previamente ajustado.

• ... - Argumentos adicionais que podem ser passados para métodos específicos de
subclasses. Geralmente, esses argumentos não são necessários para o uso básico da
função.

Utilizando novamente o modelo construido, exem_model_glarma, que dado
um número de observações igual a 100, teve um intervalo temporal de estudo definido
como 1901 a 2000 (100 anos), a função fitted apresenta a seguinte estrutura de retorno

Exemplo utilização fitted GLARMA

Elaborado pelo autor (2025)

58

Exemplo retorno fitted GLARMA

Elaborado pelo autor (2025)

3.5.3 forecast()

Função para o cálculo de previsões. A função retorna uma previsão paramétrica,
baseada na distribuição especificada pelo parâmetro ”distr”, independentemente do hori-
zonte de previsão solicitado. Diferente do método de forecast do INGARCH, que retorna
uma previsão baseado em um bootstrap paramétrico para horizontes de previsão maiores
que 1

Em um fluxo de modelagem, a função é chamada da seguinte maneira

Exemplo função forecast GLARMA

Elaborado pelo autor (2025)

Possui os seguintes argumentos.

• object - Este é o argumento principal da função e refere-se ao modelo de série
temporal que foi previamente ajustado.

• h - Controla o horizonte de previsão. É um valor numérico que especifica o número
de passos à frente para os quais as previsões serão geradas

59

• ... - Argumentos adicionais que podem ser passados para métodos específicos de
subclasses. Geralmente, esses argumentos não são necessários para o uso básico da
função.

A função tem como objeto de retorno um tsibble, contando os 4 colunas: a primeira
é o nome do modelo, a segunda é a data que o valor foi predito, a terceira é a distribuição
da previsão para aquele momento do tempo (a distribuição é utilizada para construção
de intervalos de confiança) e a quarta coluna representa a média da previsão

Como já destacado, diferente da função construída para o modelo glarma, que
utiliza um bootstrap paramétrico para previsões maiores que 1 passo a frente, a função
forecast para o modelo GLARMA utiliza a distribuição de probabilidade especificada
independentemente do tamanho do horizonte de previsão. Ou seja as previsões são geradas
de forma direta a partir da distribuição assumida para o processo

Utilizando novamente o modelo construido, exem_model_glarma.

Exemplo utilização forecast GLARMA (h = 1)

Elaborado pelo autor (2025)

Exemplo retorno forecast GLARMA (h = 1)

Elaborado pelo autor (2025)

Já para um horizonte igual a 10 (sendo portanto maior que 1), vemos que a função
apresenta a mesma distribuição de quando calculamos uma previsão 1 passo a frente

Exemplo utilização forecast GLARMA (h > 1)

Elaborado pelo autor (2025)

̸=

60

Exemplo retorno forecast GLARMA (h > 1)

Elaborado pelo autor (2025)

3.5.4 glance()

Função que retorna uma tabela com as métricas erro-padrão, log-verossimilhança,
AIC e BIC do modelo construído.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

Exemplo função glance GLARMA

Elaborado pelo autor (2025)

Possuindo os seguintes argumentos

• x - Este é o argumento principal da função e refere-se ao modelo de série temporal
que foi previamente ajustado.

• ... - Argumentos adicionais que podem ser passados para métodos específicos de
subclasses. Geralmente, esses argumentos não são necessários para o uso básico da
função.

Utilizando novamente o modelo construido, exem_model_glarma, a função
apresenta a seguinte estrutura de retorno

Exemplo utilização glance GLARMA

Elaborado pelo autor (2025)

61

Exemplo retorno glance GLARMA

Elaborado pelo autor (2025)

3.5.5 residuals()

Função que extrai os resíduos do modelo construído.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

Exemplo função residuals GLARMA

Elaborado pelo autor (2025)

Possui apenas um argumento

• object - Este é o argumento principal da função e refere-se ao modelo de série
temporal que foi previamente ajustado.

Utilizando novamente o modelo construido, exem_model_glarma, a função
apresenta a seguinte estrutura de retorno

Exemplo utilização residuals GLARMA

Elaborado pelo autor (2025)

62

Exemplo retorno residuals GLARMA

Elaborado pelo autor (2025)

3.5.6 tidy()

Função para extrair métricas sobre os coeficientes. A função retorna a estimativa
pontual, desvio-padrão e z-ratio e o p-valor do parâmetro estudado

Ela possui os seguintes argumentos

• object - Este é o argumento principal da função e refere-se ao modelo de série
temporal que foi previamente ajustado.

• type - Refere-se ao a forma na qual o intervalo e confiança deve ser calculado.
”normalaproxx” se refere a uma aproximação via distribuição Normal e ”boot” se
refere a método de bootstrap paramétrico

• ... - Argumentos adicionais que podem ser passados para métodos específicos de
subclasses. Geralmente, esses argumentos não são necessários para o uso básico da
função.

Em um fluxo de modelagem, a função é chamada da seguinte maneira

63

Exemplo função tidy GLARMA

Elaborado pelo autor (2025)

Utilizando novamente o modelo construido, exem_model_glarma, a função
apresenta a seguinte estrutura de retorno

Exemplo utilização tidy GLARMA

Elaborado pelo autor (2025)

Exemplo retorno tidy GLARMA

Elaborado pelo autor (2025)

64

3.6 DISPONIBILIZAÇÃO E IDENTIDADE VISUAL

Como já citado anteriormente, umas das mais famosas características do R, senão a
mais famosa, é o suporte da comunidade através do desenvolvimento de pacotes gratuitos.
E buscando facilitar o acesso dos usuários a esses pacotes desenvolvidos pelas comunidade,
o time R (R team) como é conhecida a equipe de pesquisadores do R, disponibiliza 2 opções
para publicação de pacotes.

A primeira e mais simples é pelo Github. O Github é uma plataforma virtual
gratuita para armazenamento de repositórios utilizando o sistema Git. Essa opção é
utilizada para armazenamento do pacote em sua fase inicial, ou fase de desenvolvimento.
É uma opção mais simples pois o pacote desenvolvido não passa por nenhum tipo de teste
antes da publicação e sua manutenção se dá exclusivamente pelo desenvolvedor

Já a segunda opção e que se mostra como o padrão ouro para todo pacote bem
estruturado é via CRAN. O CRAN (Comprehensive R Archive Network) é o repositório
oficial de pacotes do R e para um pacote ser aceito e publicado nesse repositório é necessá-
rio a aprovação em diversos testes automatizados de software e testes não automatizados
realizados pelo time R. Dado a robustez de testes, pacotes publicados no CRAN possuem
um maior grau de acabamento e detalhes, possuindo menos erros e com uma documenta-
ção maior e mais detalhada quando comparados aos pacotes disponibilizados apenas no
Github

O pacote estudado nesse trabalho, fableCount, possui um repositório oficial no
Github para versões de desenvolvimento e também possui sua versão oficial já aceita e
publicada no CRAN.

Além dessas 2 formas de baixar o pacote, uma página na web foi criada no intuito
de disponibilizar de maneira simplicada a documentação oficial do pacote, facilitando o
entendimento de cada modelo e função por parte dos usuários

Portanto os meios oficias de comunicação e disponibilização do pacotes são:

• Github: Repositório onde versões em desenvolvimento são armazenadas. Nele, os
métodos e modelos mais recentes são disponibilizados, embora ainda não tenham
passado por um processo intensivo de testes e documentação. Esses recursos estão
em fase experimental e podem sofrer alterações antes de serem integrados às versões
estáveis. Pode ser acessado via: https://github.com/Gustavo039/fableCount

• CRAN: Repositório onde a versão oficial do pacote é armazenada. A versão dispo-
nível passou por um rigoroso processo de testes e documentação, tanto pela equipe
de desenvolvimento do pacote quanto pelo time do R. Como resultado, a probabili-
dade de erros nas funções disponibilizadas é extremamente baixa, garantindo maior

https://github.com/Gustavo039/fableCount

65

estabilidade e confiabilidade para os usuários. Pode ser acessado via: https://cran.r-
project.org/web/packages/fableCount/

• Página Web Oficial: Página que oferece a documentação oficial do pacote, in-
cluindo exemplos detalhados de uso e aplicação de cada função. Além disso, apre-
senta uma linha do tempo que destaca as novidades introduzidas em cada versão
e suas respectivas datas de lançamento. A página também conta com uma seção
dedicada aos autores e às fundações de fomento que contribuíram para o desenvolvi-
mento do pacote. Pode ser acessado via: https://gustavo039.github.io/fableCount/

Um dos pontos de sucesso do tidyverse é sua identidade visual, onde cada pacote
conta com cores, fontes, logo e estilização própria. Essa estratégia auxilia na classificação
de cada pacote pelos usuários.

Durante a criação da página web, identificou-se a necessidade de desenvolver uma
identidade visual para o pacote, considerando o crescimento de pacotes que funcionam
como extensão do fable. Tornou-se essencial estabelecer um nome e uma identidade
visual distintos para garantir uma diferenciação clara em relação aos demais. Buscando
atender tais critérios,a identidade visual do pacote foi criada, incluindo conjunto de cores,
tipografia, logotipo oficial e sua descrição

A identidade visual do pacote precisava seguir o padrão do fable base, reforçando
sua natureza como uma extensão ao pacote original, mas também foi desenvolvida estrate-
gicamente para melhorar a diferenciação em relação aos demais pacotes fable, facilitando
o reconhecimento pelos usuários.

Considerando fatores como: cor, fonte, arte central e nome explicitado, o pacote
teve o seguinte logo construído

Logo FableCount

Elaborado pelo autor (2025)

Vemos que em comparação com a logo do pacote fable, ele se diferencia em relação
a fonte utilizada, assim como na estilização arte central. Apesar disso, o tom azulado e

https://cran.r-project.org/web/packages/fableCount/
https://cran.r-project.org/web/packages/fableCount/
https://gustavo039.github.io/fableCount/

66

e o gráfico temporal no centro da imagem continuam presentes. Dessa forma, o pacote
criado possui a sua própria identidade, reforçando seus aspecto únicos, mas sem esquecer
totalmente do pacote origial para o seu desenvolvimento

Comparação fableCount e fable

Elaborado pelo autor (2025)

67

4 ALGORITMOS PARA AUTOMATIZAÇÃO DE MODELAGEM

O seguinte capítulo tem como objetivo apresentar cada parte do fluxo de modela-
gem automatizadas disponibilizada no pacote.

É importante destacar o nome dado para tal processo: ”Algoritmos para Automa-
tização”. No contexto de generalização e mecanização de processos, 3 palavras similares
mas que possuem significados distintos são comumente utilizadas fora de seus nichos es-
pecíficos, sendo elas ”automático”, ”automação” e ”automatização”

A palavra ”automático” buscar descrever algo que opera por si só, sem a necessi-
dade de intervenção humana contínua, e portanto é um adjetivo que descreve algo que
funciona por conta própria. Onde seu desenvolvimento foi idealizado para que não hou-
vesse intervenção humana em nenhum momento do processo.

A ”automação” está diretamente ligada a processos industriais. Refere-se a um
mecanismo ou sistema que opera praticamente sem a intervenção humana. Ele está di-
retamente ligado ao conceito de Indústria 4.0 ou das chamadas ”fábricas inteligentes”,
integrando diferentes tecnologias para melhorar a gestão e aumentar a produtividade.
Além de executar a tarefa que foi programada, o sistema de automação industrial pode
aprender a melhor forma de desempenhá-la, acionar outros sistemas e fazer escolhas sem
necessitar de ajuda humana. Ou seja, ele é capaz de analisar o próprio trabalho e tomar
decisões sozinho.

Já um mecanismo automatizado, refere-se a algo que foi configurado ou adaptado
para operar de maneira automática. Este termo geralmente implica que um processo,
tarefa ou sistema que anteriormente requeria intervenção manual foi modificado para
funcionar de maneira autônoma. Ou seja, tal mecanismo ainda pode possuir intervenção
humana em seu processo.

O pacote desenvolvido possui algoritmos para seleção automática de distribuição,
para seleção automática de parâmetros e para busca de melhor modelo de previsão, porém
a chamada desses não é obrigatória, permitindo ao pesquisador escolher métodos mais
tradicionais de modelagem. Além disso, cada algoritmo possui diferentes métodos de
serem abordados, necessitando de uma especificação inicial por parte do usuário. Assim,
a palavra que melhor se encaixa no contexto estudado é a de ”automatização de processos”.

Apesar do método como um todo ser melhor descrito a partir da palavra ”automa-
tizado”, cada passo de processo não possui a intervenção humana e desde sua concepção
ele foi idealizado de tal forma. Assim, os nomes para cada parte do processo serão acom-
panhados da palavra ”automática”.

O seguinte fluxograma foi elaborado para facilitar o entendimento de tais defini-
ções, onde essas poderiam ser consideradas supérfluas ou delongadas, mas nas quais são
necessárias para a plena construção de um tópico tão importante para o trabalho.

68

Fluxo Automizado fableCount

Elaborado pelo autor (2025)

Tal automatização se divide em 3 passos.

(i) Seleção da Distribuição

- Determina a distribuição de probabilidade a ser utilizada no modelo

(ii) Seleção das Ordens Paramétricas

- Determina as ordens autorregressivas e de médias móveis (p, q) do modelo utili-
zado. Certos métodos possuem a capacidade de determinação da ordem sazonal (P, Q)

(iii) Seleção do Melhor Modelo de Previsão

- Seleciona o modelo que minimiza alguma função de custo como EQM, MAE,
MASE e outros

69

No contexto de automatização, a construção de suas funções deve ser realizada
de uma maneira cautelosa, na qual o trade-off de desempenho e tempo de execução
computacional deve ser realizado com equilíbrio

Algoritmos extremamente precisos exigem um alto desempenho computacional,
contrariando uma das propostas iniciais do pacote em relação a rápida estimação de mode-
los. Além disso, certos limites computacionais são observados devido à busca exacerbada
por precisão, onde a tentativa de uma ligeira melhoria na modelagem pode resultar em
várias horas adicionais de execução computacional.

Já no outro extremo, algoritmos de execução instantânea muitas vezes apresentam
baixo desempenho estatístico, pulando ou deixando de lado inúmeros passos fundamentais
na busca pelo melhor modelo. Tal fato tornaria inútil tais algoritmos. Todo pesquisador
gostaria de estimar rapidamente modelos para as 5568 cidades do Brasil, mas tal busca se
torna absurda e infundada ao saber que os modelos estimados são imprecivos e errôneos

A partir do contexto apresentado, os métodos implementados no pacote buscam sa-
tisfazer ambos os lados, apresentando algoritmos otimizados que buscam um ótimo tempo
de execução computacional, mas que para isso, não deixem de lado a precisão necessária
para boas análises e previsões. Além disso, as seguintes seções buscaram descrever que o
passo a passo desse processo automatizado pode ser personalizado, assim métodos mais
precisos e mais longos ou menos precisos e mais rápidos, podem ser selecionados pelo
usuário

4.1 ALGORITMO PARA SELEÇÃO AUTOMÁTICA DE DISTRIBUIÇÃO

Ambos os modelos implementados no pacote possuem como ponto de partida a
seleção de uma distribuição de probabilidade adequada para os dados trabalhados. Di-
ferentemente de um modelo ARMA, que supõe normalidade, os modelos GLARMA de
Valores Inteiros e INGARCH podem utilizar as distribuições Poisson e Binomial Negativa
como já citado no capítulo 2.

A idéia inicial dos algoritmos desenvolvidos para esse passo era a de testar se
os dados trabalhados apresentavam o fenômeno de sobredispersão, onde a variância é
significativamente maior que a média. A partir do teste aplicado, tería-se 2 possibilidades

1. Se não houve sobredispersão nos dados, a distribuição Poisson seria utilizada

2. Se houve sobredispersão nos dados, a distribuição Binomial Negativa seria
utilizada

Apesar de estatisticamente o fenômeno de sobredispersão significar que para uma
variável aleatória X, V ar(X) > E(X), sendo relativamente simples testar no contexto de
testes para paramêtros, no contexto de uma regressão Poisson, que é o caso dos modelos
GLARMA e INGARCH tem-se que a distribuição condicional dos dados segue certa distri-

70

buição de densidade de probabilidade, não sua distribuição marginal. Consequentemente,
a variância será igual à média dentro de cada conjunto específico de valores das variáveis,
mas não em todas elas. Em geral, a variância marginal será maior que a média marginal,
mesmo quando os pressupostos da regressão de Poisson estiverem exatamente corretos
(Cameron e Trivedi 1990). Ou seja, um simples teste de E(X) = V ar(x) não deve ser
utilizado diretamente nos dados, e sim aplicados em modelos INGARCHs e GLARMAs
já estimados.

A partir do ponto apresentado, o desenvolvimento de tal passo apresentou suas
barreiras iniciais: Para testar sobredispersão, modelos iniciais devem ser estimados, mas
a especificação de tais modelos no contexto de séries temporais ainda é desconhecido,
onde a determinação dos parâmetros (p, q) se tornam necessários antes da definição da
distribuição a ser utilizada no modelo. Tal fato implica em um alto custo computacional
para a determinação de um passo que deveria ser o mais simples e rápido dentro os
restantes.

(Weiß e Schweer 2015) introduz a ideia de detecção de sobredispersão para mode-
los INARCH(1) (Heterocededasticidade Condicional Autorregressivo), que se desenvolve
entorno da construção da distribuição assintótica do modelo para construção de um teste
de hipótese. Apesar do teste apresentar um bom poder, sua aplicação nos modelos IN-
GARCH e GLARMA é utópico no contexto desse trabalho, onde distribuições assintóticas
para ambos os modelos teriam que ser construídas

Dado a impossibilidade do desenvolvimento de um teste apropriado de sobredisper-
são no contexto dos modelos estudados, (Weiß e Schweer 2015) descreve a boa precisão
dos critérios de informação AIC e BIC selecionarem o modelo correto em casos assin-
tóticos. Além disso, o mesmo autor cita a estrutura similar de autocorrelação entre o
modelo ARMA e os modelos GLARMA e INGARCH. Assim, o algoritmo desenvolvido
nesse passo se baseia na estimação de modelos Poisson GLARMA(p, q) e Binomial Ne-
gativo GLARMA(p, q) ou Poisson INGARCH(p, q) e Binomial Negativo INGARCH(p, q),
onde as ordens (p, q) são obtidas via o algoritmo do auto-arma, selecionando o modelo
que miniza certo critério de informação. Dessa forma, o problema de estimação de di-
versos modelos GLARMA ou INGARCH é eliminado através do algoritmo otimizado do
auto-arma

O seguinte fluxograma foi elaborado para ilustrar esse passo (o objeto ”m” si-
nalizado no fluxograma, vem de ”modelo” e pode assumir os valores: INGARCH ou
GLARMA)

O algoritmo auto-arma será abordado em detalhes no próximo tópico. De forma
resumida, trata-se de um método para a seleção automática das ordens autorregressiva
(AR, representada por p) e de média móvel (MA, representada por q) em modelos ARMA.
Para isso, utiliza-se o algoritmo de Hyndman-Khandakar, que automatiza a escolha

71

Algoritmo de Seleção de Distribuição

Elaborado pelo autor (2025)

dessas ordens. As ordens selecionadas são então replicadas no ajuste de modelos de
contagem (GLARMA e INGARCH)

Com a distribuição a ser utilizada no modelo já selecionada, o segunda passo da
modelagem automatizada é disparada, onde as ordens dos parâmetros são definidas

4.2 ALGORITMOS PARA BUSCA AUTOMÁTICA DE ORDEM DE PARÂMETROS

Um obstáculo comum para muitas pessoas no uso dos modelos ARMAs para pre-
visão é que o processo de seleção de ordens de parâmetros geralmente é considerado
subjetivo e difícil de aplicar. (Hyndman e Khandakar 2008)

No contexto convencional de análise de séries temporais, a determinação das or-
dens dos parâmetros autorregressivos e de médias móveis envolve um processo exaustivo
de investigação das funções de autocovariância (FAC) e autocorrelação parcial (FACP).

72

Este processo é muitas vezes caracterizado por sua natureza manual, onde o pesquisador
deve avaliar minusiosamente lags significativos e não significativos na FAC e FACP. Em
muitos casos, esse processo também é subjetivo, pois os sinais de truncamento e decai-
mento exponencial desejáveis nas funções não são facilmente identificáveis, tornando a
interpretação dessas características uma tarefa passíveis de erros. Além disso, tal pro-
cedimento se mostra inviável no contexto de grandes bases de dados, onde por exemplo
deseja-se estimar um modelo para cada cidade no Brasil. Assim, a motivação para o
desenvolvimento de algoritmos de busca automática de parâmetros em modelos de sé-
ries temporais é evidente diante dos desafios apresentados pelo processo convencional de
determinação das ordens dos parâmetros autorregressivos e de médias móveis

O pacote fable tem como uma de suas principais características possuir algoritmos
para seleção automática de ordens de parâmetros em todos modelos disponibilizados.
Cada modelo possui seu próprio algoritmo, tendo métodos de buscas e critérios de paradas
distintos. Os mais importantes e que serviram de base para a elaboração dos algoritmos
que serão descritos para os modelos de contagem são aqueles disponibilizados para a classe
dos ARMAs (ARIMAs, SARIMAs, e ARMAX).

Nesse âmbito, o pacote desenvolvido nesse trabalho também disponibiliza formas
automáticas de seleção de parâmetros. Tal tópico ainda se mostra inédito no contexto de
modelos temporais de contagem, e portanto espera-se que o trabalho desenvolvido seja
utilizado como ponto de partida para demais pesquisadores

O pacote fableCount implementa três algoritmos distintos para a seleção auto-
mática das ordens (p, q) nos modelos de séries temporais de contagem. Cada um desses
algoritmos apresenta vantagens e limitações específicas, sendo concebidos para atender
diferentes perfis de usuários e contextos analíticos. Os métodos disponíveis são:

• Naive-Search

• ARMA-Based

• Post-Lasso

Esses algoritmos podem ser agrupados em duas categorias principais, conforme
proposto por (Hyndman e Khandakar 2008) e (Tran e Reed 2004):

1. Algoritmos Atravessadores de Espaço de Parâmetros (Parameter Space Tra-
versers Algorithms)

2. Algoritmos de Regularização (Regularization Algorithms)

A distinção entre essas classes se dá pela natureza do processo de busca do modelo
ideal:

73

• Algoritmos de atravessamento de espaço de parâmetros como o Naive-
Search e o ARMA-Based consistem na estimação de múltiplos modelos, cada um
com diferentes combinações de ordens (p, q). O critério de informação (AIC ou BIC)
é utilizado para identificar o modelo mais adequado entre os candidatos estimados.

• Algoritmos de regularização, por outro lado, baseiam-se na aplicação de pena-
lizações do tipo L1 (como no método LASSO), promovendo a seleção automática
das defasagens mais relevantes dentro de um modelo único de ordem máxima pré-
definida. A estrutura final do modelo é então derivada a partir dos coeficientes
distintos de zero, seguido de uma reestimação não penalizada (Post-LASSO).

Os tópicos subsequentes descrevem em detalhe o funcionamento e as particulari-
dades de cada um dos métodos apresentados.

4.2.1 MÉTODO NAIVE-SEARCH

O método Naive-Search (em português, Busca Ingênua) considera uma matriz de
busca 4x4, onde as linhas dessa matriz representam a ordem autorregresiva e as colunas
representam a ordem de médias móveis. Todos os modelos de combinações (p, q) indo de
0 a 3 são estimados, e seus valores de AIC, ou BIC são armazenados nessa matriz. Ao
final do algoritmo, a busca-se os indices dessa matriz que apresentam o menor valor do
critério de informação utilizado.

De maneira detalhada, primeiramente o algoritmo define uma matriz 4x4, chamada
de matriz de busca. O primeiro objetivo dessa matriz é indicar os indices dos modelos que
devem ser estimados, onde suas linhas representam a ordem autorregresiva e as colunas
representam a ordem de médias móveis, indo de 0 a 3 tanto em linhas tanto em colunas.
Dessa forma, todas as combinações de modelos (p, q) para 0 a 3 são estimadas. Tal
limite superior para as ordens dos parâmetros foi definido por conta das condições de
estacionariedade e invertibilidade dos modelos, onde essas são necessária para a produção
de previsões. A seguinte imagem foi criada exemplifica o primeiro passo do algoritmo,
onde a matriz de busca é inicializada

No segundo passo desse algoritmo, cada elemento dessa matriz passa a conter
um modelo armazenado, onde por exemplo o elemento 1x1 armazenará um modelo IN-
GARCH(0,0). O critério de informação definido pelo usuário, AIC OU BIC, são calculados
para todos os modelos, onde esses valores são armazenados no lugar do modelo estimado,
dessa forma a matriz de busca não possui mais o modelo em si, mas só o valor de crité-
rio informação. Essa decisão foi tomada por desempenho computacional, onde manipular
uma matriz com valores numéricos é mais simples do que manipular uma matriz contendo
objetos-modelos

74

Matriz de Busca no Passo 1 no Método Naive-Search

Elaborado pelo autor (2025)

Matriz de Busca no Passo 2 no Método Naive-Search

Elaborado pelo autor (2025)

No terceiro passo do algoritmo, os indices que apresentam o menor valor de critério
de informação são obtidos e assim o modelo com menor AIC ou BIC é retornado

Na imagem a seguir, definiu-se um exemplo onde um modelo com (p, q) igual (1, 2)
foi aquele a apresentar menor critério de informação

Resumidamente, o método é dividido nos seguintes passos

1. Estimam-se todos os modelos correspondentes às combinações de ordens (p, q) com
p, q ∈ {0, 1, 2, 3} e tais modelos são armazenados na matriz de busca

2. Calcula-se, para cada modelo estimado, o critério de informação especificado pelo
usuário (AIC ou BIC)

75

Matriz de Busca no Passo 3 no Método Naive-Search

Elaborado pelo autor (2025)

3. Retorna-se o modelo associado ao menor valor do critério de informação adotado,
sendo este considerado o mais adequado dentre os avaliados.

O algoritmo possui esse nome por estimar todos os modelos do espaço paramétrico
definido, não utilizando um caminho ótimo de busca como o método Stepwise. Apesar
de ser um método com maior tempo de execução, ele sempre irá retornar o modelo de
menor critério de informação. Esse método ainda não possui capacidade para busca de
ordens sazonais. Tais características são as principais diferenças em relação ao próximo
algoritmo apresentado

4.2.2 MÉTODO ARMA-BASED

O algoritmo ARMA-Based baseia-se no algoritmo de busca proposto por (Hyndman e Khandakar 2008),
para seleção automática de parâmetros para modelos ARMA. Diferente do algoritmo
Naive-Search, Hyndman-Khandakar utilizam um método Stepwise para percorrer o espaço
paramétrico, sendo chamado de ”A Stepwise procedure for traversing the model space”. É
importante destacar que tal método tem suporte para seleção de ordem de parâmetros
sazonais. Ele possui os seguintes passos

• Passo 0: Um teste de Canova-Hansen é aplicado para verificar a presença de sazo-
nalidade estável na série temporal.

• Bifurcação do processo: Com base no resultado do teste:

76

– Se não houver sazonalidade, o processo segue a seleção de modelos não
sazonais.

– Se houver sazonalidade, adota-se a estratégia de seleção de modelos sazo-
nais.

Para séries não sazonais:

• Passo 1: Define-se um conjunto inicial de cinco modelos candidatos:

– ARMA(0,0) com e sem constante

– ARMA(1,0) com constante

– ARMA(0,1) com constante

– ARMA(2,2) com constante

• Passo 2: Calcula-se o critério de informação (AIC ou BIC) para os modelos defini-
dos. O modelo com menor valor é armazenado.

• Passo 3: Realizam-se variações incrementais e decrementais de ±1 nas ordens (p, q)
do modelo selecionado, além da inclusão ou remoção da constante. O novo modelo
é comparado com o anterior. Os passos 2 e 3 são repetidos até que não haja mais
redução no critério de informação.

Para séries sazonais:

• A lógica é a mesma da seleção não sazonal, mas considera-se a estrutura SARMA.
Os modelos iniciais incluem:

– SARMA(0,0)(0,0)m

– SARMA(1,0)(0,0)m

– SARMA(0,1)(0,0)m

– ARMA(2,2) com constante

– ARMA(0,0) sem constante

• A partir do melhor modelo inicial, aplicam-se novamente variações nas ordens e
constantes, com repetição iterativa dos passos até que novo modelo não apresente
um critério de informação inferior ao modelo atualmente em consideração.

A seguinte imagem foi elaborada por Hyndman para ilustrar o processo

77

Método Stepwise de Hyndman-Khandakar

Elaborado pelo autor (2025)

No escopo dos modelos de contagem e da implementação de estratégias automati-
zadas para seleção de parâmetros, adota-se o algoritmo de Hyndman e Khandakar como
referencial para a determinação das ordens ótimas (p, q). Tal escolha é respaldada por
(Weiß e Schweer 2015), o qual demonstra que modelos de contagem como GLARMA e
INGARCH compartilham estruturas de autocorrelação similares àquelas observadas em
modelos ARMA. Nesse sentido, a utilização das ordens identificadas a partir de um mo-
delo ARMA convencional como ponto inicial para a modelagem de séries de contagem
apresenta altas chances de obter um bom desempenho

4.2.3 MÉTODO VIA Post-LASSO

O método LASSO (Least Absolute Shrinkage and Selection Operator) foi proposto
por Robert Tibshirani em 1996, com o objetivo de melhorar a interpretação e o desem-
penho de modelos de regressão quando há um grande número de variáveis explicativas.
O LASSO se destaca por sua capacidade de realizar seleção de variáveis e regularização
simultaneamente, tornando-se especialmente útil em cenários com alta dimensionalidade
ou quando se deseja evitar o sobreajuste do modelo.

Em modelos lineares clássicos, como a regressão linear múltipla, a estimação dos
coeficientes é feita por mínimos quadrados ordinários (OLS). Embora eficiente sob certas
condições, o OLS tende a apresentar instabilidade quando o número de variáveis é grande
ou quando existe multicolinearidade entre os regressores. O LASSO surge como uma
alternativa que introduz uma penalização na função de custo, incentivando soluções mais
parcimoniosas, ou seja, selecionando apenas variáveis relevantes

Formulação Estatística

78

Considere um modelo de regressão linear com vetor de resposta y ∈ Rn, e o vetor
de coeficientes β ∈ Rp. A estimação pelo método LASSO é dado por meio do seguinte
problema de otimização

β̂ = arg min
β

{ 1
2n

∥y − Xβ∥2
2 + λ ∥β∥1

}
, (4.1)

onde ∥·∥2 denota a norma Euclidiana e ∥·∥1 denota a norma l1 definida como
∥β∥1 = ∑p

j=1 |βj|. O parâmetro de regularização λ ≥ 0 controla o grau de penalização:
quanto maior λ, maior o encolhimento dos coeficientes, podendo forçar alguns deles a zero
o que efetivamente realiza a seleção de variáveis.

Embora o LASSO tenha sido inicialmente desenvolvido para modelos de regressão
linear, sua aplicação foi posteriormente estendida para contextos mais complexos, in-
cluindo modelos autoregressivos e séries temporais de contagem. Nesses casos, o LASSO
pode ser utilizado para selecionar automaticamente os defasagens mais relevantes dos re-
gressores e da própria série, o que é particularmente útil quando se trabalha com modelos
como INGARCH ou GLARMA, onde a estrutura de defasagens pode ser extensa.

Além do LASSO tradicional, outras variantes foram desenvolvidas para aprimorar
ainda mais a seleção de variáveis e lidar com limitações do método original. O Adap-
tive LASSO (AdaLASSO), proposto por (Zou 2006), introduz pesos adaptativos na pe-
nalização l1, permitindo que variáveis com maior relevância inicial recebam penalizações
menores. Essa abordagem melhora a consistência na seleção de variáveis, sendo útil em
contextos onde se deseja recuperar a estrutura verdadeira do modelo, especialmente em
séries temporais com defasagens longas. Mais recentemente, o Weighted Lag Adaptive
LASSO (WLadaLASSO) foi proposto para cenários específicos de séries temporais, in-
corporando pesos distintos para diferentes defasagens e adotando funções perda robustas
como a LAD (Least Absolute Deviations). Essa metodologia mostrou-se particularmente
eficaz na presença de sobredispersão e heterocedasticidade.

Contudo, neste trabalho optamos por adotar o enfoque do Post-LASSO, dada
a natureza do problema em questão: nosso principal objetivo é selecionar automatica-
mente as defasagens mais relevantes dos termos autoregressivos (AR) e de média móvel
(MA), sem a necessidade de reestimar os coeficientes a partir da estrutura penalizada do
LASSO. Assim, utilizamos o LASSO como ferramenta de triagem de variáveis e, uma vez
selecionadas as defasagens, reestimamos os parâmetros por métodos tradicionais, como
o estimador de máximo verossimilhança, respeitando a estrutura probabilística do mo-
delo de contagem escolhido. Essa abordagem se mostrou adequada para o nosso objetivo
de análise estrutural e interpretabilidade do modelo, mantendo o viés de estimação sob
controle ao empregar estimadores não penalizados na etapa final.

A abordagem Post-LASSO consiste em um procedimento de duas etapas: seleção
de defasagens relevantes por meio da penalização LASSO e reestimação de um modelo

79

final com apenas as variáveis selecionadas. A seguir, descrevem-se as etapas da estratégia:

1. Inicialização - Inicialmente, é necessário definir um conjunto inicial de defasa-
gens autorregressivas e de médias móveis. Para isso, ajusta-se um modelo INGARCH ou
GLARMA preliminar, com ordens máximas (p0, q0), sendo:

• Defasagens autorregressivas: yt−1, yt−2, ..., yt−p0

• Defasagens de médias móveis: et−1, et−2, ..., et−q0

Essas defasagens serão utilizadas como variáveis explicativas no modelo LASSO

2. Estimação via LASSO - Nesta etapa, ajusta-se um modelo de regressão
penalizada LASSO, onde a variável resposta é a própria série temporal yt, e as variáveis
explicativas são as defasagens selecionadas anteriormente. O modelo ajustado tem a
seguinte forma:

yt = β0 +
p0∑

i=1
βiyt−i +

q0∑
j=1

γjet−j + εt (4.2)

com a penalização l1 aplicada aos coeficientes βi e γi, que promove a seleção auto-
mática de variáveis relevantes, defasagens com coeficientes iguais a zero são descartadas

3. Seleção final e reestimação (Post-LASSO) - Após a etapa de penalização,
extrai-se o último coeficiente não nulo estimado pelo LASSO para os termos AR e MA.
Assim, definem-se as ordens finais do modelo como:

• p̂ = max{i : β̂i ̸= 0}

• q̂ = max{i : γ̂i ̸= 0}

Com os valores de p̂ e q̂ selecionados, reestima-se o modelo de séries temporais
(por exemplo, INGARCH ou GLARMA), utilizando o método usual de estimação para
cada um dos modelos, utilizando apenas as defasagens retidas pelo LASSO.

4.2.4 COMENTÁRIOS SOBRE OS MÉTODOS

Diferentemente dos métodos Naive-Search e ARMA-based, que se baseiam na esti-
mação de diversos modelos e na seleção daquele que minimiza um critério de informação,
como o AIC ou o BIC, o método baseado em LASSO estima apenas um modelo final.
Apesar dessa vantagem de simplicidade, trata-se de uma abordagem que pode apresentar
maior instabilidade computacional, uma vez que depende de métodos numéricos sujeitos
à não convergência e da escolha adequada do parâmetro de penalização λ

Cada método possui seus respectivos pontos fortes e limitações, sendo a escolha do
mais adequado determinada pelas características dos dados e pelos objetivos do estudo.

80

A Tabela 1 apresenta uma comparação entre os métodos implementados neste
trabalho e pode servir como um guia de referência rápida para a escolha da abordagem
mais apropriada.

Tabela 1 – Comparação entre os métodos de seleção de ordens (p, q)

Critério Naive-Search ARMA-Based Post-LASSO
Tipo de busca Exaustiva Stepwise guiada Regularização

(L1)
Espaço explorado Completo (ex.:

p, q ≤ 3)
Parcial, guiado
por heurística

Parcial, definido
por penalização

Custo computacional Alto Baixo Moderado
Estabilidade da estimação Alta Alta Moderada
Suporte à sazonalidade Não Sim Não
Reestimativa final Não necessária Não necessária Sim (pós-seleção)
Objetivo principal Precisão na esco-

lha global
Eficiência com
boa precisão

Seleção parcimoni-
osa e adaptativa

Dependência de tuning Não Parcial (critérios) Alta (valor de λ)
Recomendado para Séries curtas Séries sazonais e

modelagem explo-
ratória

Séries longas ou
alta dimensionali-
dade

4.3 ALGORITMO PARA BUSCA DE MELHOR PREVISÃO

Uma questão recorrente na área de estatística e aprendizado de máquina é a di-
ferenciação de modelos com foco em inferência daqueles com foco em predição/previsão.
Enquanto a primeira classe busca a construção de modelos parsimoniosos, buscando a
interpretação das variáveis explicativas utilizadas, onde os critérios de informação são fer-
ramentos importantíssimas nesse contexto, a segunda classe de modelos busca exaustival-
mente o modelo de menor erro de predição/previsão, deixando em segundo plano questões
como um elevado número de covariávies e baixo poder de interpretação. Deve-se destacar
que no contexto de séries temporais, é mais adequado a utilização do termo”previsão” em
relação ao termo ”predição”, onde esse tem como significado: a antecipação de algo, a
construção daquilo que ainda não aconteceu

Como ja destacado, os critérios AIC e BIC são essenciais para a primeira classe,
pois esses se baseiam em uma função da verossimilhança penalizada pelo número de
parâmetros. Tais critérios já foram definidos e utilizados em seções anteriores. No outro
extremo, para modelos com foco em previsão, outras métricas são utilizadas, onde essas
utilizam como ponto inicial o erro do modelo estimado.

Um erro de previsão é a diferença entre o valor observado e o valor previsto, e
pode ser escrito como

et+h = yt+h − ŷt+h|t (4.3)

81

A análise em cima do erro de previsão por si só não fornece informações suficientes
sobre a distribuição e a natureza dos erros. Ao utilizar diferentes métricas, é possível obter
uma visão mais abrangente e detalhada do desempenho do modelo, identificando áreas
específicas que necessitam de melhorias e permitindo a escolha da métrica mais adequada
para o contexto específico da aplicação. É nesse cenário que diversos tipos métricas são
utilizadas, onde essas estão disponíveis no pacote, tais métricas também são chamadas de
”métricas de avaliação” (evaluation metrics)

4.3.1 MÉTRICAS DE AVALIAÇÃO

Diferentes métricas são utilizadas em diferentes cenários. Desde métricas livres de
escala, a métricas que buscam penalizar maiores erros, o pacote desenvolvido nesse traba-
lho buscou disponilizar a maior gama possível para que o usuário pudesse personalizar a
escolha do melhor modelo da maneira que o agradasse.

A primeira classe de métricas são as mais simples, e chamadas de Erros Depen-
dentes de Escala. Essas métricas utilizam a mesma escala que os dados trabalhados, e
portanto não podem ser utilizadas para comparar séries que possuam diferentes escalas

É importante destacar que no pacote tais métricas são chamadas em ingles.

MAE - Mean Absolute Error = média(|et|) (4.4)

RMSE - Root Mean Squared Error =
√

média(e2
t) (4.5)

Enquanto o MAE possui uma interpretação mais direta e simples, o RMSE busca
penalizar modelos que possuem erros de maiores magnitudes. Ambas métricas são popu-
larmente utilizadas e possuem pouca diferença em tempo de execução computacional

A segunda classe de métricas não dependem da escala dos dados e são chamados
de Erros percentuais. Usualmente, se baseiam no valor de pt, onde pt = 100et

yt
, e são

utilizados para comparação de séries com diferentes unidades

A métrica mais usual é dada por

MAPE - Mean Absolute Percentage Error = média(|pt|) (4.6)

Por sua definição, o MAPE possui a desvantagem de atribuir um peso maior a erros
negativos do que positivos, tornando-se uma métrica assimétrica. Buscando contornar tal
característica, (Genetski 1978) propôs a métrica MAPE Simétrico, dado por

sMAPE(Symmetric MAPE) = média(200|yt − ŷt|
(yt + ŷt)

) (4.7)

82

Apesar de ambas as métricas apresentarem vantagens para comparações de séries
de diferentes unidades, ambas apresentam valores indefinidos ou tendendo ao infinito para
yt próximos a 0, caso comum para dados de contagem. Além disso, o sMAPE pode ter
valores negativos, e portanto em certos casos não pode ser considerado uma verdadeira
métrica de Erros percentuais absolutos

A terceira e última classe de métricas disponibilizadas são os chamados Erros Di-
mensionados. Sendo propostos por (Hyndman e Koehler 2006) tal classe é uma alterna-
tiva ao Erros Percentuais, podendo ser utilizada para comparar a precisão de modelos em
séries com diferentes unidades. O intuito geral do método é dimensionar o erro baseado
no MAE de treinamento do modelo.

Para séries não sazonais, o erro dimensionado é definido por

qj = ej

1
T −1

∑T
t=2 |yt − yt−1|

(4.8)

Já para séries sazonais, tem-se que

qj = ej

1
T −m

∑T
t=m+1 |yt − yt−m|

(4.9)

onde m indica o indice sazonal da série

A partir da definição de qj, as métricas da classe Erros Dependentes de Escala
são construidas novamente

MASE - Mean Absolute Scaled Error = média(|qj|) (4.10)

RMSSE - Root Mean Squared Scaled Error =
√

média(q2
j) (4.11)

4.3.2 MÉTODOS DE AVALIAÇÃO DE DESEMPENHO PREDITIVO DE SÉRIES
TEMPORAIS

Para a avaliação do erro de um modelo, é necessário que esse seja calculado a partir
de um conjunto de dados que não tenha sido utilizado em sua estimação. Nesse contexto,
a técnica mais conhecida é de divisão do conjunto de dados disponível em 2 partições:
treino e teste. Enquanto a primeira é utilizada para estimação dos parâmetros do
modelo, a segunda tem o objetivo testar sua precisão e acurácia. Na área de regressão e
aprendizado de máquina, a técnica mais simples se baseia na divisão de 75% dos dados
para a base de treino e 25% para a base teste, onde uma amostra aleatória simples é
realizada para essa partição.

Para séries temporais, uma simples amostra aleatória simples não pode ser utili-
zada por conta da correlação temporal dos dados. Para contornar esse problema, utiliza-se

83

a técnica chamada Fora da Amostra (Out-of-Sample, OOS). Nessa abordagem, define-se
uma data de corte na série temporal; todos os valores anteriores a essa data são utilizados
para o treinamento do modelo, enquanto todos os valores posteriores são usados para teste.
Dessa forma, preserva-se a estrutura temporal dos dados, garantindo uma avaliação mais
realista do desempenho do modelo em situações futuras.

Método OOS para Avaliação de Modelos Temporais

Elaborado pelo autor (2025)

Essa abordagem tem os benefícios de possuir um rápido tempo de execução com-
putacional e apresentar um bom desempenho de como o modelo construído é capaz de
generalizar em dados futuros. Apesar disso, tal técnica tem como principal desvantagem
a perda de observações para o treinamento do modelo, no qual uma vez que os dados são
divididos, a parte de teste se torna oculta na seção de treinamento.

Buscando contornar esse problema, uma abordagem cada vez mais utilizada em
aprendizado de máquina é o chamado K-folds Cross Validation onde o conjunto de
dados é divido em k subconjuntos, onde executa-se k iterações, na qual ao final da execução
do algoritmo, todos os dados são utilizados para o treino e para o teste do modelo.

Novamente para séries temporais, a aplicação de tal abordagem se mostra um
pouco diferente por conta da correlação temporal entre os dados. Assim um método
mais robusto quando comparado ao OSS é o chamado Time Series Cross Validation
ou Evaluation on a Rolling Forecasting Origin. Essa técnica se baseia na criação
sucessivos OOS, onde cada novo OOS, há um aumento dos dados de treino

84

Método Time Series Cross Validation

Elaborado pelo autor (2025)

Tais definições são importantíssimas para o entendimento do tópico, onde tais
técnicas são utilizadas para o cálculo das métricas de erro dos modelos construídos

4.3.3 BUSCANDO E AVALIANDO O MELHOR MODELO

Diferentemente das etapas de busca de melhor distribuição e de melhores ordens
de parâmetros que utilizam algum critério de informação para retornar o modelo final, a
definição do melhor modelo de previsão se define em sua maior parte na busca do modelo
a apresentar menores métricas de avaliação

Para facilitar a escrita e tornar a leitura do tópico mais fluida, utilizaremos a
abreviação ABMMP - (Algoritmo de Busca de Melhor Modelo de Previsão).

O algoritmo desenvolvido buscou ponderar da melhor forma o trade-off de preci-
são e desempenho computacional. É importante destacar que os métodos que calculam as
métricas de avaliação, seja um simples OSS ou um Time Series Cross Validation, deman-
dam um maior tempo de execução computacional que um cálculo de AIC ou BIC. Assim,
a idéia base do algoritmo é filtrar alguns dos principais modelo a partir de algum critério
de informação fornecido pelo usuário, calcular suas métricas de avaliação e retornar o
modelo que minimiza tais valores.

O ABMMP é externo aos demais passos ja descritos, ou seja, os passos de busca
de distribuição e ordem de parâmetros conversam entre si obrigatoriamente (dado que o
usuário não tenha especificado nenhum desses 2 pontos), porém o passo descrito no tópico
atual utiliza uma estratégia diferente das demais

Dado que os algoritmos descritos anteriormente sempre retornavam um modelo ao
final de sua execução, se o ciclo continuasse nesse último passo, ele não realizaria uma
busca verdadeira, mas apenas calcularia as métricas de avaliação do modelo retornado no

85

passo 2. Assim, o ABMMP utiliza algoritmos semelhantes aos vistos nos passos 1 e 2,
porém com modificações específicas desenvolvidas para satisfazer a parte de busca.

Para chamar o ABMMP, o usuário deve especificar 3 argumentos:

(i) Método de Busca de Ordem de Parâmetros. - Deve-se escolher entre Naive-
Search-Forecast ou Tri-EVAL. Ambos os métodos serão detalhados na próxima seção

(ii) Método de Cálculo da Métrica de Avaliação - Deve-se escolher entre os métodos
OSS ou Time Series Cross Validation

(iii) Métrica de Avaliação que deve ser Minimizada - Deve-se escolher apenas 1
métrica dentre as definidas na subseção 4.3.1.

4.3.3.1 BUSCA DE ORDEM DE PARÂMETROS

Os métodos aqui apresentados são apenas modificações daqueles já descritos na
seção 4.2 (Algoritmos para busca automática de ordem de parâmetros). As modificações
encontram-se principalmente na parte final do algoritmo.

É fundamental destacar que os modelos que apresentam os menores critérios de
informação, como AIC ou BIC, não são necessariamente aqueles com as melhores métri-
cas de avaliação de previsão. No entanto, esses modelos geralmente estão próximos dos
modelos ótimos para previsão. Em outras palavras, embora os modelos que minimizam o
AIC ou BIC não sejam sempre os melhores para previsão, a probabilidade de se encontrar
o modelo ótimo é maior na vizinhança desses modelos. Portanto, a base dos algoritmos
descritos nesta seção é utilizar algum método de seleção automática de ordens de parâme-
tros, conforme apresentado na seção 4.2, para selecionar um modelo inicial. Em seguida,
testamos os modelos vizinhos para identificar aqueles que apresentam melhores métricas
de avaliação.

4.3.3.1.1 NAIVE-SEARCH-FORECAST

O método Naive-Search-Forecast possui como idéia principal utilizar o algoritmo
Naive-Search para buscar o modelo que apresenta uma melhor métrica de avaliação, dife-
rente do método usual, que busca o modelo com o menor valor de AIC e BIC

A ideia central consiste em ranquear os modelos com base em um critério de
informação, de forma que o modelo melhor posicionado seja considerado como ponto de
partida. A partir desse ranking, realiza-se uma comparação sequencial: o modelo na
posição i é comparado com o modelo na posição i + 1. O processo é interrompido quando
o modelo na posição i apresenta uma métrica de avaliação inferior (melhor desempenho)
em relação ao modelo i + 1, adotando-se esse ponto como critério de parada.

O algoritmo pode ser dividido nos seguintes passos

86

1. Execução do Naive-Search (até o passo 2) - O algoritmo inicia com a execução do
método Naive-Search, limitado até a etapa de cálculo dos critérios de informação (AIC ou
BIC) para cada modelo gerado na matriz de busca. Nesse estágio, não há ainda avaliação
preditiva, apenas a estimativa dos modelos e a quantificação de sua complexidade e ajuste
via critérios clássicos.

2. Rankeamento dos modelos - Com os valores de AIC ou BIC calculados, os
modelos são ordenados de forma crescente ou seja, do menor para o maior valor do critério
de informação. Essa ordenação define a prioridade de comparação entre os modelos, sendo
o modelo com menor AIC/BIC considerado o mais promissor inicialmente.

3. Comparação sequencial com base em métrica preditiva - Inicia-se a avaliação
sequencial dos modelos rankeados. Compara-se a métrica de desempenho preditivo (por
exemplo, RMSE ou MAPE) entre o primeiro e o segundo modelo do ranking. Caso o
primeiro modelo apresente desempenho superior, o algoritmo é encerrado, adotando-o
como modelo final. Caso contrário, a comparação prossegue entre o segundo e o terceiro
modelo, repetindo o processo até que um modelo apresente desempenho melhor que seu
sucessor direto. Esse ponto define o critério de parada do algoritmo.

4.3.3.1.2 Tri-EVAL

Executa os 3 métodos de busca automática de ordem de parâmetros Naive-Search,
ARMA-Based e Post-LASSO e retorno aquele modelo que possui a combinação de ordens
P e Q que apresenta a menor métrica de avaliação (melhor desempenho)

O algoritmo pode ser dividido nos seguintes passos

1. Execução dos métodos de busca automática de ordem de parâmetros - Executa
os 3 métodos (Naive-Search, ARMA-Based e Post-LASSO), onde cada método retorna
um modelo final

2. Comparação entre modelos - Compara-se a métrica de desempenho preditivo
(por exemplo, RMSE ou MAPE) entre os 3 modelos obtidos no passo 1. O modelo que
apresentar o melhor desempenho é aquele retornado pela função

Esse passo ainda possui certas limitações como.

(i) O modelo não pode conter covariáveis, mesmo que essas possuirem valor em
um tempo futuro, tornando teoricamente previsões possiveis

(ii) A construção de previsões maiores que 1 passo a frente para o modelo IN-
GARCH utiliza o método de bootstrap paramétrico, técnica essa que introduz certo nível
de viés e variância quando o método de Times Series Cross Validation é utilizado para
cálculo das métricas de avaliação

87

5 APLICAÇÃO E RESULTADOS

Esta seção tem por finalidade aplicar os modelos de contagem desenvolvidos a um
conjunto de dados reais, de modo a avaliar sua capacidade preditiva e computacional em
comparação ao modelo ARIMA e NNETAR. Para essa análise, foram utilizados dados da
pandemia de COVID-19 no Brasil, disponibilizados pelo DATASUS, consistindo em séries
temporais semanais do número de casos e óbitos confirmados.

Além da comparação entre classes de modelos, foi analisado a efetividade dos
procedimentos automáticos de seleção da ordem autorregresiva e de médias móveis dos
modelos de contagem, com o objetivo de verificar se tais estratégias produzem resultados
competitivos ou mesmo superiores aos obtidos pelo ARIMA tradicional e pelo NNETAR.

Como enfatizado na introdução, os principais desafios desse tipo de modelagem
residem na adequada representação de séries de baixa magnitude (com valores frequente-
mente próximos de zero) e na eficiência computacional durante a estimação e previsão.

5.1 DADOS UTILIZADOS

Para a presente aplicação, foram utilizados dados sobre a COVID-19 disponibili-
zados pelo DATASUS, portal oficial do governo federal.

A base contém informações de todos os municípios brasileiros, abrangendo o pe-
ríodo de 2020 a 2025, com atualização diária. Considerando a necessidade de maior
controle sobre o escopo da análise e buscando adequar o estudo ao contexto geográfico e
temporal de interesse, optou-se por aplicar um filtro, selecionando apenas municípios do
estado de Minas Gerais, referentes ao ano de 2024.

O estudo teve como objetivo modelar tanto os casos confirmados de COVID-19
quanto os óbitos registrados. Para isso, foram selecionados 39 municípios mineiros para
compor o conjunto de dados de casos confirmados e 35 municípios para o conjunto de
dados de óbitos.

Para a seleção desses municípios, realizamos uma amostragem estratificada a partir
dos 853 municípios de Minas Gerias, com base no número total de casos confirmados e
óbitos ao longo do ano. Foram definidos três estratos para cada variável.

Os estratos foram definidos a partir de uma análise exploratória dos dados originais,
resultando na seguinte classificação:

88

Tabela 2 – Estratificação das variáveis de casos confirmados e óbitos

Tipo de variável Categoria do estrato Valor mínimo Valor máximo
Casos confirmados Baixo 10 100
Casos confirmados Médio 100 250
Casos confirmados Alto 250 —
Óbitos Baixíssimo 1 4
Óbitos Baixo 5 9
Óbitos Médio 10 20
Óbitos Alto 20 —

Dessa forma, foi possível identificar em quais contextos os modelos apresentaram
melhor desempenho, possibilitando uma comparação mais equilibrada entre eles.

A base final utilizada para o treinamento passou por um ajuste no índice tempo-
ral das séries. Na base original, as observações eram registradas diariamente; contudo,
considerando que os dados diários podem apresentar inconsistências e incoerências devido
a atrasos ou atualizações no sistema por parte do governo, optou-se por agregá-los por
semana epidemiológica. Com isso, cada município passou a ter 52 observações anuais no
conjunto de dados empregado para a modelagem.

A etapa de treinamento consistiu na definição e estimação dos modelos a serem
comparados. Foram consideradas duas classes principais: (1) os modelos atualmente
empregados na plataforma, representados por ARMA e NNETAR; e (2) os modelos de
contagem desenvolvidos neste trabalho, representados por GLARMA e INGARCH.

O objetivo dessa etapa foi garantir uma base de comparação justa entre os mo-
delos clássicos e as novas implementações voltadas para séries temporais de contagem,
permitindo avaliar tanto o desempenho preditivo quanto os aspectos computacionais de
cada abordagem.

O modelo ARMA foi ajustado por meio do procedimento stepwise de seleção auto-
mática de ordens, conhecido como método de HyndmanKhandakar (Hyndman e Khandakar 2008).

O modelo NNETAR foi estimado com base nas rotinas automatizadas de seleção
de arquitetura e ordens disponíveis na função nnetar() do pacote fable. Essa função
implementa uma rede neural autoregressiva. O processo inclui a escolha automática do
número de defasagens e neurônios na camada oculta, conforme a metodologia proposta
por (author?) (Hyndman e Athanasopoulos 2021).

Para o modelo GLARMA, foram definidos os métodos Naive-Search e ARMA-
Based

De forma análoga, o modelo INGARCH foi estimado em três variações, Naive-
Search, ARMA-Based e Naive-Search e Post-LASSO

A combinação desses diferentes métodos permitiu comparar não apenas o desem-

89

penho preditivo dos modelos de contagem, mas também a eficiência e robustez de cada
estratégia de seleção de parâmetros, em um contexto de ajuste em larga escala.

Tanto para conjunto de dados de casos confirmados e óbitos, os modelos foram
treinados e avaliados de duas maneiras distintas, com o objetivo de comparar desempenho
em diferentes horizontes de previsão:

1. Validação temporal (time-series cross-validation) este procedimento de va-
lidação com origem móvel (rolling-origin) foi utilizado para avaliar a acurácia dos
modelos em previsões de um passo à frente (horizonte mínimo). Essa abordagem
permite medir o desempenho em condições de predição curta e verificar estabilidade
das previsões ao longo do tempo.

2. Avaliação out-of-sample (OOS) aqui os modelos foram treinados em um con-
junto de treino fixo e avaliados em um conjunto fora da amostra para previsões
de quatro passos à frente. No contexto deste estudo, em que a unidade temporal
são semanas epidemiológicas, um horizonte de quatro passos corresponde a um mês
completo, sendo considerado um horizonte de previsão relativamente longo.

Ambas as estratégias foram adotadas para investigar se a acurácia relativa dos
modelos depende do horizonte de previsão. A métrica principal utilizada para comparação
é o RMSE

5.2 HIPÓTESES

Para orientar a análise empírica e garantir que os resultados obtidos não se disper-
sassem em observações fragmentadas ou interpretações meramente descritivas, optou-se
por estabelecer previamente um conjunto de hipóteses a serem investigadas. A defini-
ção dessas hipóteses fornece um caminho estruturado para a análise, permitindo que a
investigação se desenvolva de forma organizada e consistente, em vez de ficar à mercê de
achados isolados ou desconexos. Com isso, busca-se otimizar a investigação, tornando-a
mais clara, eficiente e replicável, além de possibilitar uma interpretação dos resultados
dentro de um quadro analítico coerente.

O presente trabalho adota uma abordagem exploratória e comparativa para avali-
ação das hipóteses, sem recorrer a testes estatísticos formais de significância. As análises
foram conduzidas de forma descritiva, tendo o RMSE como métrica principal para men-
surar a acurácia dos modelos. A verificação das hipóteses foi realizada por meio da
comparação direta dos resultados obtidos, buscando identificar padrões de desempenho
nos diferentes estratos de séries temporais, no tempo de execução e nas características es-
pecíficas das previsões, com ênfase na interpretação prática e no comportamento relativo
entre as abordagens.

90

Com base nos dados e modelos definidos, foram formuladas hipóteses fundamenta-
das tanto na experiência empírica de utilização dos modelos ARIMA e NNETAR quanto
no objetivo de desenvolver e avaliar modelos de contagem. Cada hipótese descreve um ce-
nário esperado de desempenho ou característica dos modelos, sendo avaliada a partir dos
valores de RMSE obtidos nas previsões e de observações qualitativas sobre os resultados.

A seguir, temos as hipóteses desenvolvidas, assim como a técnica utilizada para
analisar essas hipóteses.

1. Modelos de contagem apresentam um erro menor para estratos ”Bai-
xos” e ”Baixíssimo” Como descrito durante boa parte do trabalho, a construção dos
modelos de contagem foram motivados pela necessidade da melhoria do desempenho em
dados com valores próximos a 0 e assim é necessário analisar esse comportamento. A ava-
liação é dada calculando-se o RMSE médio dos modelos para todas as séries pertencentes
ao estrato de baixa contagem. Os valores serão comparados entre modelos de contagem
e modelos clássicos (ARIMA e NNETAR) para verificar qual grupo apresenta melhor
desempenho nesse cenário.

2. Modelos de contagem exigem menor tempo de treinamento do que
NNETAR (por série), tornando-os mais escaláveis para muitos municípios. O
tempo de execução para ajuste de cada modelo será registrado individualmente por série.
A comparação será feita analisando-se o tempo médio por estrato de município, analisando
de maneira apartada os tempos de treinamento e previsão de cada modelo. Esperamos
que os modelos de contagem tenham um tempo total de execução menor que o modelo
NNETAR

As hipóteses embasam a premissa do trabalho, encontrar modelos que sejam tão
rapidos de execução quanto um ARMA, mas que tenham a precisão e interpretabilidade
dos resultados de um NNETAR

5.3 RESULTADOS

Após treinarmos os modelos utilizando o método de cross validation e via out of
sample, foi possível analisar os desempenhos e analisar as hipóteses formuladas conside-
rando a variável de casos confirmados

O pipeline utilizado para modelagem pode ser observado através do seguinte flu-
xograma

91

Pipeline da construção de modelos e obtenção de métricas

Fonte: Elaborado pelo autor (2025)

5.3.1 CASOS CONFIRMADOS

Após treinarmos os modelos utilizando o método de cross validation e via out of
sample, foi possível analisar os desempenhos e analisar as hipóteses formuladas conside-
rando a variável de casos confirmados

Para melhor organização, as tabelas com os resultados serão mostradas em 2 blocos
distintos. Primeiro, para os modelos com previsão 1 passo a frente, onde o método TSCV
foi utilizado, e depois para os modelos com previsão 4 passos a frente, onde o método
OOS foi utilizado

É importante destacar que células que não apresentam valores de RMSE, são por
conta de modelos que não foram possíveis de serem estimados. Esse erro ocorreu apenas
para os modelos GLARMA, e se dá por conta não convergência dos métodos numéricos
utilizados para a estimação dos parâmetros do modelo

- AVALIAÇÃO EM UM HORIZONTE CURTO DE PREVISÃO VIA

92

TIME SERIES CROSS-VALIDATION

Tabela 3 – RMSE via TSCV por município estrato de casos baixos

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Berizal 1.232 1.275 - - 0.752 0.757 0.767
Caiana 0.568 0.444 - - 0.439 0.492 0.491
Cascalho Rico 11.015 10.804 11.113 11.000 10.823 10.800 10.823
Cristiano Otoni 0.903 1.019 0.707 1.000 0.903 0.917 0.903
Divinésia 0.780 0.428 - - 0.687 0.676 0.676

Dom Viçoso 0.078 0.229 - - 0.198 0.202 0.202
Franciscópolis 0.541 10.499 2.500 1.225 1.772 1.408 2.222
Glaucilândia 1.252 3.396 - - 0.905 1.138 1.141
Guidoval 0.344 0.335 0.866 0.758 0.314 0.327 0.322
Ipuiúna 0.891 0.514 1.414 1.257 0.801 0.649 0.618

Piracema 0.991 0.943 1.225 0.866 0.991 1.006 1.006
Ponto Chique 0.437 0.500 0.500 0.707 0.422 0.479 0.495
Vazante 1.193 0.900 - - 1.270 1.270 1.221

Dos 13 municípios classificados com nível baixo de casos confirmados, o modelo
ARMA apresentou o melhor desempenho em apenas 1 localidade. O modelo NNETAR
destacou-se em 3 municípios, enquanto o GLARMA obteve o menor RMSE em 2 casos.
Já o modelo INGARCH foi o mais eficiente em 6 municípios, destacando-se como aquele
que apresentou o melhor desempenho no maior número de ocorrências.

Cabe ressaltar que a primeira hipótese formulada foi confirmada para este estudo
de caso: os modelos de contagem superaram os modelos tradicionais, apresentando melhor
desempenho em 8 municípios

Além disso, quando comparamos os métodos para seleção automática de ordem
de parâmetros, vemos que o método ARMA-based foi o melhor 6 ocasiões, enquanto o
Naive-Search foi o melhor em 2 ocasiões (todas em modelos GLARMA) e o método via
LASSO foi o melhor em apenas 1 ocasião

Tabela 4 – RMSE via TSCV por município estrato de casos médio

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Alpinópolis 0.633 0.654 1.155 0.577 2.467 0.801 0.729
Araçuaí 7.105 7.884 8.930 5.766 5.257 6.776 6.776
Caxambu 6.144 6.156 - - 6.439 6.487 6.487
Conselheiro Pena 2.292 1.456 - - 1.877 1.205 1.905
Coronel Fabriciano 11.558 11.811 18.815 11.522 11.972 11.972 11.994

Cruzília 4.401 1.681 - - 3.773 2.429 2.334
João Pinheiro 2.037 1.927 2.872 2.550 2.576 2.807 2.166
Leopoldina 6.185 6.739 7.246 7.714 6.005 6.428 7.019
Miraí 0.689 1.542 - - 1.243 1.232 1.232
Ouro Branco 4.793 6.045 - - 4.202 5.075 4.200

Santana do Jacaré 3.774 4.063 - - 2.972 3.555 3.433
São José da Lapa 2.758 6.731 4.387 2.646 2.758 2.703 3.161
Veríssimo 0.207 0.081 1.936 2.062 0.316 2.169 0.060

93

Analisando os municípios com nível mediano de casos confirmados, vemos que os
modelos ARMA e NNETAR apresentaram o menor RMSE em 2 municípios cada. Já o
modelo GLARMA teve o melhor desempenho em 3 ocasiões, e o modelo INGARCH foi o
melhor em 5 cidades

Novamente, vemos que os modelos de contagem apresentaram um desempenho
superior aos modelos tradicionais, se mostrando como a melhor alternativa em 9 dos 13
municípios analisados. Além disso, vemos que o modelo INGARCH foi aquele a apresentar
o melhor desempenho, se mostrando o melhor modelo tanto para o estrato de casos baixo
como casos medianos

Analisando os métodos para seleção automático de ordem de parâmetros, vemos
que o método Naive-Search foi aquele a apresentar o menor RMSE em mais ocasiões,
tendo o melhor desempenho em 5 municípios. Já o método via LASSO foi o melhor em
apenas 1 ocasião, sendo aquele com menor destaque dentre os 3 métodos

Tabela 5 – RMSE via TSCV por município estrato de casos alto

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Andradas 15.033 17.246 - - 15.729 15.729 12.941
Arcos 213.855 244.020 214.76 221.588 199.418 236.637 213.383
Capelinha 3.554 7.690 - - 3.377 4.134 3.916
Congonhas 23.990 23.338 28.00 22.000 17.337 20.723 19.404
Curvelo 21.677 31.214 - - 20.471 20.168 20.382

Governador Valadares 17.997 15.410 - - 16.161 20.042 20.042
Itapecerica 20.568 27.670 9.22 12.649 20.908 21.183 19.838
Itaú de Minas 10.720 9.920 6.18 7.000 8.552 9.880 9.916
Ituiutaba 4.683 5.481 - - 28.680 5.935 3.016
João Monlevade 14.406 12.236 12.50 13.601 12.296 13.422 11.877

Lagoa da Prata 4.595 2.608 - - 4.956 4.101 3.613
Mariana 41.345 51.652 - - 45.337 45.337 44.332
São João del Rei 15.688 11.568 3.00 1.450 15.816 15.536 14.702

Passando para o cenário dos municípios com a maior volumetria de casos confir-
mados, vemos que os modelos de contagem apresentaram o melhor desempenho em 10
dos 13 municípios.

Novamente, vemos que o modelos INGARCH foi aquele a apresentar o melhor
desempenho em mais ocasiões, tendo o menor RMSE em 6 municípios

Vale destacar que para os casos no qual o modelo GLARMA se mostrou superior,
a diferença para os outros modelos foi significativa, chegando a um ganho de desempenho
médio próximo a 60% quando comparado ao segundo melhor modelo de outra família

- AVALIAÇÃO EM UM HORIZONTE LONGO DE PREVISÃO VIA
OUT OF SAMPLE

94

Tabela 6 – RMSE via OSS por município estrato de casos baixo

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Berizal 0.820 2.043 - - 0.616 0.696 0.656
Caiana 0.483 0.655 - - 0.427 0.443 0.452
Cascalho Rico 11.000 10.686 11.000 10.050 10.804 10.824 10.813
Cristiano Otoni 0.896 0.900 0.500 1.000 0.888 0.883 0.886
Divinésia 0.738 0.480 - - 0.671 0.671 0.642

Dom Viçoso 0.066 0.600 - - 0.422 0.485 0.477
Franciscópolis 0.752 7.811 2.550 1.225 1.726 1.771 3.850
Glaucilândia 1.118 1.192 - - 0.908 1.073 1.085
Guidoval 0.354 0.393 0.027 0.500 0.354 0.362 0.363
Ipuiúna 0.784 0.521 0.119 0.866 0.870 0.718 0.462

Piracema 0.990 0.959 2.062 0.707 1.005 0.965 0.971
Ponto Chique 0.433 0.427 0.707 0.707 0.414 0.445 0.442
Vazante 1.000 1.441 - - 1.020 1.030 0.914

Passando a avaliar um horizonte de previsão para o intervalo de 4 semanas epide-
miológicas, vemos que os modelos de contagem continuam a apresentar um desempenho
superior quando comparados aos modelos tradicionais para o estrato ”baixo” de casos
confirmados. Dos 13 municípios analisados, os modelos desenvolvidos nesse trabalho apre-
sentaram um desempenho superior em 10 casos, sendo 5 vezes para o modelo INGARCH
e 5 vezes para o modelo GLARMA

Vale destacar que novamente os métodos de seleção automática de parâmetros
ARMA-based se mostraram superior aos demais, sendo o melhor método em 6 dos 10
municípios nos quais os modelos de contagem foram os melhores

Tabela 7 – RMSE via OSS por município estrato de casos médio

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Alpinópolis 1.070 0.748 1.118 3.279 2.525 1.258 1.225
Araçuaí 5.355 8.271 3.571 5.050 5.217 5.254 5.281
Caxambu 5.196 5.342 - - 5.231 5.215 5.183
Conselheiro Pena 1.952 1.412 - - 1.429 1.422 1.461
Coronel Fabriciano 9.550 12.510 9.618 10.840 9.449 9.448 10.029

Cruzília 4.510 19.764 - - 3.873 2.995 2.869
João Pinheiro 1.649 2.139 5.635 2.958 2.734 2.962 2.053
Leopoldina 6.128 6.262 7.566 7.036 6.121 6.129 6.178
Miraí 0.470 4.297 - - 1.808 1.855 1.963
Ouro Branco 4.361 15.436 - - 4.354 4.370 4.552

Santana do Jacaré 2.710 3.597 - - 2.913 2.700 2.557
São José da Lapa 2.741 15.728 3.428 2.739 2.734 2.521 3.238
Veríssimo 0.000 2.473 3.606 2.550 0.447 2.548 0.003

Assim como no cenário de um horizonte de previsão curto, os modelos de contagem
também apresentaram um desempenho superior no cenário de horizonte de previsão longo
considerando um estrato de casos confirmados médios. Dos 13 municípios analisados, os
modelos de contagem apresentaram desempenho superior aos modelos tradicionais em 8
ocasiões

95

Analisando os métodos de seleção automática de ordem de parâmetros, vemos
uma boa distribuição de desempenho entre os 3 métodos desenvolvidos nesse trabalho.
Diferentemente do cenário para o estrato ”baixo” de casos confirmados, onde vimos uma
desempenho superior do método ARMA-based, para o cenário atual vemos que RMSE
entre familias de modelos iguais tivaram uma diferença mínima. Como para o município
de Coronel Fabriciano, onde a delta do RMSE foi de 0,001

Tabela 8 – RMSE via OSS por município estrato de casos alto

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Andradas 12.846 16.304 - - 13.590 13.644 12.427
Arcos 169.748 300.994 184.022 183.899 169.102 169.066 173.505
Capelinha 3.159 25.824 - - 4.597 3.982 4.968
Congonhas 15.867 14.772 - - 15.706 15.713 16.025
Curvelo 14.168 16.168 - - 15.197 15.344 15.288

Governador Valadares 14.215 42.353 - - 16.179 17.429 17.245
Itapecerica 14.702 15.896 - - 15.093 15.025 15.701
Itaú de Minas 9.432 9.855 - - 8.145 8.296 8.199
Ituiutaba 3.742 8.342 - - 29.612 18.513 5.870
João Monlevade 12.132 12.236 11.000 12.379 12.143 12.173 11.179

Lagoa da Prata 5.469 2.792 - - 5.105 4.575 4.097
Mariana 33.249 46.887 - - 33.577 33.541 34.661
São João del Rei 11.470 11.370 - - 11.472 11.432 11.525

No último cenário avaliado para a variável de casos confirmados, onde foi estudado
um horizonte de previsãpo longo com alta volumetria, vimos que pela primeira vez um
destaque dos modelos tradicionais em relação aos modelos de contagem.

Dos 13 municipios analisados, os modelos tradicionais apresentaram desempenho
superior em 9 ocasioes, com destaque para o modelo ARMA que teve o melhor desempenho
em 6 municípios.

Assim como já imaginado e definido via hipótese, o ganho de desempenho que
é visto dos modelos de contagem em relação aos modelos tradicionais em volumetria
menores, diminui a medida que essa volumetria aumenta. Vimos a diminuição dos modelos
de contagem se mostrando como os melhores a medida que a volumetria aumentava,
saindo de 10 ocasiões para o estrato ”baixo”, indo para 8 ocasiões para o estrato ”médio”
e chegando a apenas 3 ocasiões no estrato ”alto”

Um ponte interessante observado aqui foi que essa perda de desempenho não foi
observada para um horizonte de previsão curto, como mostrado na seção anterior, onde os
modelos de contagem apresentaram o melhor desempenho para os 3 estratos analisados.

Assim, notamos que os modelos de contagem estrapolaram a zona ótima de mo-
delagem descrita na hipótese, onde além de apresentarem um ótimo desempenho para
estratos de casos ”baixos”, eles tambem foram superiores para estratos medios (horizonte
de previsão curto e longo) e altos (horizonte de previsão curto)

96

5.3.2 ÓBITOS

Para avaliação dos modelos de previsão para óbitos, o fluxo de trabalho desenvol-
vido foi o mesmo daquele utilizado na modelagem de casos confirmados. Ou seja, para
avaliação do modelo em um horizonte de previsão curto, o método de TSCV foi utilizado,
onde modelos para os estratos de volumetria de óbitos ”baixíssimo”, ”baixo”, ”médio”,
”alto”. Ja para a avaliação dos modelos em um horizonte de previsão longo, o método
OOS foi utilizado

- AVALIAÇÃO EM UM HORIZONTE CURTO DE PREVISÃO VIA
TIME SERIES CROSS-VALIDATION

Tabela 9 – RMSE via TSCV por município estrato de óbitos baixíssimo

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Abaeté 0.000 0.066 0.000 0.5 0.061 0.061 0.061
Bom Sucesso 0.503 0.480 1.118 0.5 0.482 0.482 0.482
Coração de Jesus 0.000 0.020 0.500 0.0 0.020 0.020 0.020
Corinto 0.000 0.021 0.000 0.0 0.020 0.020 0.020
Ervália 0.000 0.022 0.000 0.0 0.020 0.020 0.020

Itaúna 0.000 0.022 0.000 0.0 0.020 0.020 0.020
Itinga 0.000 0.021 0.000 0.0 0.020 0.020 0.020
Januária 0.000 0.044 0.000 0.0 0.040 0.040 0.040
Jaíba 0.000 0.042 0.000 0.5 0.040 0.040 0.040
Matutina 0.000 0.021 0.000 0.0 0.020 0.020 0.020

Mutum 0.000 0.000 0.000 0.0 0.020 0.020 0.020
Nova União 0.000 0.021 0.000 0.0 0.020 0.020 0.020

É possível observar que, para o estrato baixíssimo, diversos modelos apresentaram
RMSE igual a zero, ou seja, a estimativa pontual produzida foi exatamente igual ao valor
real a ser estimado.

Embora isso possa parecer um bom sinal à primeira vista, no contexto de modelos
estatísticos e de aprendizado de máquina, espera-se que exista algum erro associado às
previsões. Quando um modelo não apresenta erro algum, frequentemente estamos diante
de um caso de overfitting ou sobreajuste , situação em que o modelo se adapta excessi-
vamente aos dados de treinamento, perdendo a capacidade de generalização para novos
dados.

No conjunto de dados analisado, esse fenômeno ocorre principalmente devido à
predominância de valores zero ao longo das semanas epidemiológicas. O estrato baixíssimo
é composto por municípios que registraram entre 1 e 4 óbitos confirmados durante o ano de
2024, distribuídos ao longo das 52 semanas epidemiológicas. Isso significa que, na maioria
dessas semanas, o número de óbitos registrados foi zero, o que influencia fortemente o
treinamento dos modelos.

Diante dessa alta frequência de zeros, os modelos acabam também gerando estima-
tivas iguais a zero, o que leva ao falso indício de desempenho perfeito. No entanto, esse

97

tipo de ajuste pode ser problemático, pois aumenta o risco de o modelo não ser capaz
de identificar mudanças no padrão dos óbitos ao longo do tempo. Ou seja, ao se ajustar
perfeitamente ao conjunto de treinamento, o modelo tende a apresentar estimativas en-
viesadas, frequentemente prevendo valores iguais a zero e falhando em detectar possíveis
aumentos no número de óbitos.

Para series temporais com esse tipo de fenômeno, os modelos de contagem apresen-
tados podem ser utilizados, mas é importante destacar novamente que esses possuem uma
baixa capacidade de se adaptarem em mudanças rápidas quando esse fenômeno ocorre

Para captar essas mudanças, outros tipos de abordagens podem ser recomendadas,
onda essas estão além do escopo desse trabalho, mas valem ser mencionadas caso o leitor
se interesse em se aprofundar no tema.

- Testes de hipótese para detecção de pontos de mudança (change point detection):
Essa abordagem busca identificar momentos em que há uma mudança estatisticamente
significativa na distribuição da série temporal como uma mudança na média, na variância
ou na tendência. Métodos como o CUSUM, Pelt, ou Bayesian Change Point Detection
podem ser utilizados para detectar possíveis transições, mesmo em séries com muitos
valores constantes.

- Modelos com variáveis exógenas (ARMAX, GLARMAX, INGARCHX): Incorpo-
rar variáveis externas como o número de casos confirmados em semanas anteriores pode
ajudar os modelos a capturar padrões latentes e antecipar mudanças, mesmo quando a
variável resposta apresenta muitos zeros. O sufixo X representa uma referencia ao termo
eXogenous variables, ou variáveis exógenas em português.

- Modelos para dados esparsos ou inflacionados com zeros: Em situações com
excesso de zeros, modelos específicos como o Zero-Inflated Poisson (ZIP) ou o Zero-Inflated
Negative Binomial (ZINB) podem ser mais adequados. Esses modelos assumem que os
zeros podem vir de dois processos distintos: um que sempre gera zero (como a ausência
real de eventos) e outro que segue uma distribuição de contagem.

- Modelos bayesianos e hierárquicos: Abordagens bayesianas permitem incorporar
informações a priori e podem ser úteis para suavizar previsões em séries com baixa incidên-
cia de eventos. Modelos hierárquicos também podem aproveitar informações de diferentes
municípios ou regiões para melhorar as estimativas em locais com poucos dados.

98

Tabela 10 – RMSE via TSCV por município estrato de óbitos baixo

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Barbacena 0.142 0.093 0.0 0.0 0.142 0.087 0.087
Boa Esperança 0.142 0.112 0.5 0.000 0.142 0.114 0.142
Formiga 0.162 0.182 0.0 0.500 0.162 0.162 0.162
Frutal 0.182 0.212 0.0 0.000 0.182 0.182 0.182
Ituiutaba 0.119 0.028 - - 0.100 0.115 0.121

João Monlevade 0.101 0.094 0.0 0.500 0.101 0.170 0.101
Manhuaçu 0.121 0.123 0.0 0.0 0.121 0.141 0.121
Mariana 0.101 0.254 0.0 0.577 0.101 0.235 0.101
Poços de Caldas 0.548 0.499 - - 0.514 0.515 0.514
Ribeirão das Neves 0.006 0.165 - - 0.142 0.106 0.123

São Sebastião do Paraíso 0.336 0.187 - - 0.360 0.146 0.142
Unaí 0.142 0.159 0.500 0.500 0.142 0.108 0.142

Observamos novamente a ocorrência do fenômeno de overfitting em alguns modelos,
com destaque para os ajustes realizados pelo GLARMA. Esse resultado evidencia que,
mesmo os modelos de contagem, teoricamente mais adequados para lidar com dados
discretos, podem apresentar comportamentos inesperados e desempenho insatisfatório
quando aplicados a dados reais, sujeitos a variabilidade e imperfeições de medição. Ainda
assim, é possível notar que o modelo INGARCH se mostrou mais robusto e consistente
nesse tipo de cenário, uma vez que nenhum dos ajustes dessa classe apresentou resíduos
nulos, indicando uma modelagem mais estável e adequada às características do conjunto
de dados analisado.

Tabela 11 – RMSE via TSCV por município estrato de óbitos medio

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Araxá 0.243 0.254 0.000 0.500 0.243 0.243 0.243
Conselheiro Lafaiete 0.583 0.619 0.707 0.707 0.572 0.437 0.580
Contagem 0.960 1.059 1.118 1.118 0.958 1.013 1.087
Divinópolis 0.632 0.758 1.414 1.291 0.618 0.619 0.618
Governador Valadares 1.035 1.079 1.225 1.118 0.989 0.989 0.989

Teófilo Otoni 1.247 6.013 - - 0.276 1.070 1.070
Três Corações 0.202 0.228 0.000 0.707 0.202 0.189 0.202

Para o estrato de óbitos classificado como médio, que compreende os municípios
com uma faixa de 10 a 20 óbitos ao longo de 2024, observou-se que o modelo GLARMA
apresentou resíduo igual a zero em dois municípios, indicando possível instabilidade no
ajuste.

Nos cinco municípios restantes, o modelo INGARCH demonstrou desempenho su-
perior em relação aos demais, confirmando a tendência já observada nos outros estratos.
Esse resultado reforça que o INGARCH é particularmente eficaz em contextos caracteri-
zados por séries temporais longas como as 52 semanas epidemiológicas analisadas , mas
com baixa volumetria de eventos por período, isto é, médias inferiores a 2 óbitos por
mês. Tal configuração evidencia a capacidade do modelo em lidar adequadamente com
contagens reduzidas e dispersas, preservando estabilidade e boa qualidade preditiva

99

Tabela 12 – RMSE via TSCV por município estrato de óbitos alto

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Belo Horizonte 1.780 1.710 2.550 2.121 2.204 2.137 1.807
Juiz de Fora 0.275 0.376 0.707 0.866 0.546 0.474 0.546
Uberaba 0.633 0.467 0.707 0.707 0.643 0.621 0.643
Uberlândia 1.668 3.097 1.658 2.121 1.322 1.733 1.733

Para o estrato de óbitos alto, que abrange municípios com maior volumetria de
registros, como Belo Horizonte, Juiz de Fora, Uberaba e Uberlândia, observamos um com-
portamento distinto em relação aos estratos anteriores. Nesses casos, as séries temporais
apresentam menor predominância de zeros e maior variabilidade semanal, o que torna o
ajuste dos modelos mais desafiador, mas também mais informativo para a comparação de
desempenho.

De forma geral, o ARMA e o NNETAR mantiveram desempenho competitivo, com
destaque para o modelo baseado em rede neural, que apresentou o menor RMSE em dois
dos quatro municípios analisados (Belo Horizonte e Uberaba). Esse resultado sugere que,
em contextos com maior densidade de observações e padrões temporais mais complexos,
abordagens não lineares são capazes de capturar melhor as dinâmicas locais dos dados,
beneficiando-se da maior quantidade de variação disponível para o treinamento.

Por outro lado, os modelos de contagem (GLARMA e INGARCH), que haviam
se destacado nos estratos de menor volumetria, apresentaram desempenho inferior nesse
grupo. O modelo GLARMA, em particular, mostrou RMSEs elevados, ultrapassando
2.0 em Belo Horizonte e 0.7 em Juiz de Fora, indicando uma possível limitação na sua
capacidade de acomodar flutuações mais amplas e padrões mais irregulares quando o
número de eventos é alto.

Entre os modelos da classe INGARCH, o método baseado em um modelo ARMA
apresentou o melhor desempenho em Uberlândia (RMSE = 1.322), superando os demais
modelos, inclusive o NNETAR. Esse comportamento reforça que, embora os modelos
de contagem sejam mais adequados para dados discretos, seu desempenho é sensível ao
regime de variabilidade: eles tendem a ser mais estáveis em séries com baixa média e
dispersão controlada, mas podem perder acurácia conforme aumenta a amplitude das
contagens semanais.

- AVALIAÇÃO EM UM HORIZONTE LONGO DE PREVISÃO VIA
OUT OF SAMPLE

100

Tabela 13 – RMSE via OSS por município estrato de óbitos baixíssimo

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Abaeté 0.0 0.060 0.0 0.0 0.066 0.063 0.067
Bom Sucesso 0.5 0.480 0.5 0.5 0.479 0.480 0.474
Coração de Jesus 0.0 0.021 0.0 0.0 0.020 0.020 0.021
Corinto 0.0 0.019 0.0 0.0 0.016 0.022 0.022
Ervália 0.0 0.021 0.0 0.5 0.023 0.021 0.019

Itaúna 0.0 0.023 0.0 0.0 0.021 0.022 0.017
Itinga 0.0 0.019 0.0 0.0 0.023 0.019 0.020
Januária 0.0 0.041 0.5 0.0 0.047 0.042 0.046
Jaíba 0.0 0.044 0.0 0.0 0.041 0.046 0.045
Matutina 0.0 0.022 0.0 0.0 0.020 0.019 0.021

Mutum 0.0 0.0 0.0 0.0 0.019 0.022 0.018
Nova União 0.0 0.020 0.0 0.0 0.025 0.023 0.020

Tabela 14 – RMSE via OSS por município estrato de óbitos baixo

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Barbacena 0.146 0.095 0.0 0.5 0.144 0.101 0.107
Boa Esperança 0.146 0.173 0.5 0.0 0.143 0.136 0.141
Formiga 0.167 0.174 0.0 0.0 0.157 0.159 0.162
Frutal 0.188 0.183 0.0 0.5 0.193 0.175 0.188
Ituiutaba 0.152 0.063 - - 0.127 0.113 0.119

João Monlevade 0.104 0.109 0.0 0.5 0.099 0.209 0.100
Manhuaçu 0.125 0.109 0.0 0.0 0.111 0.128 0.135
Mariana 0.104 0.308 0.5 0.0 0.094 0.274 0.104
Poços de Caldas 0.500 0.455 - - 0.468 0.463 0.459
Ribeirão das Neves 0.006 0.145 - - 0.144 0.128 0.154

São Sebastião do Paraíso 0.372 0.396 - - 0.465 0.146 0.149
Unaí 0.146 0.140 0.0 1.0 0.134 0.128 0.154

Ao avançar para o estrato de óbitos baixo, a leve elevação na frequência de registros
permite uma análise mais sensível das diferenças entre modelos. Novamente, vemos que
o modelo GLARMA apresentou o fenomeno de overffitng, tendo RMSE igual a 0 em 6
dos 12 municípios analisados. O modelo INGARCH não apresentou esse problema, e se
mostrou como o modelo com melhor desempenho em 6 casos (excluindo o GLARMA com
overffitng da análise)

Tabela 15 – RMSE via OSS por município estrato de óbitos médio

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Araxá 0.250 0.271 0.500 0.000 0.265 0.260 0.250
Conselheiro Lafaiete 0.579 0.505 0.707 1.225 0.581 0.391 0.576
Contagem 0.958 0.957 1.118 0.707 0.966 0.881 0.953
Divinópolis 0.640 0.734 1.118 1.118 0.630 0.630 0.599
Governador Valadares 1.118 0.968 1.118 1.323 0.987 1.000 0.976

Teófilo Otoni 1.708 8.262 - - 0.333 1.454 1.487
Três Corações 0.208 0.196 0.000 0.000 0.204 0.201 0.209

No estrato de óbitos médio, onde há maior regularidade e densidade de eventos,
os resultados indicam uma transição no desempenho relativo entre famílias de modelos.

101

Embora ainda haja forte presença de modelos de contagem entre os melhores, os ganhos
em relação aos métodos tradicionais se tornam mais sutis, com RMSEs próximos entre
as abordagens. Casos como Governador Valadares e Conselheiro Lafaiete ilustram essa
convergência: a diferença de desempenho entre o melhor modelo INGARCH e o modelo
ARMA foi inferior a 0.1 ponto no RMSE. Ainda assim, os modelos INGARCH (nas
variantes LASSO e Naive) se destacaram em três dos sete municípios, mostrando boa
adaptabilidade às flutuações moderadas das séries. A constância dos resultados para o
GLARMA e a estabilidade dos erros reforçam a coerência metodológica observada também
nos horizontes curtos.

Tabela 16 – RMSE via OSS por município estrato de óbitos alto

Município ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Belo Horizonte 1.658 1.808 3.391 2.915 2.267 2.128 1.661
Juiz de Fora 0.317 0.523 0.707 0.707 0.574 0.549 0.573
Uberaba 0.567 0.892 1.118 0.500 0.576 0.585 0.587
Uberlândia 1.374 1.548 1.936 1.871 1.300 1.405 1.400

Por fim, no estrato de óbitos alto, caracterizado por séries mais longas, regulares e
com padrões temporais mais estruturados, observa-se um comportamento distinto do veri-
ficado nos estratos com menor volumetria. Nesse grupo, os modelos tradicionais (ARMA
e NNETAR) voltam a apresentar desempenho competitivo, com destaque para o ARMA,
que apresentou o menor RMSE em Belo Horizonte e Juiz de Fora. Entretanto, diferente-
mente do que ocorreu no cenário de uma previsão 1 passo a frente, os modelos de contagem
não perdem completamente relevância: em Uberlândia, o modelo INGARCH com método
ARMA-Based obteve o menor erro preditivo, enquanto em Uberaba o modelo GLARMA
com método Naive-Search se destaca. Assim, há um equilíbrio mais pronunciado entre os
dois blocos de modelagem, com dois municípios favorecendo modelos tradicionais e dois
favorecendo modelos de contagem.

Essa mudança de tendência reforça a hipótese formulada inicialmente no trabalho:
o ganho dos modelos de contagem é maior em contextos de baixa volumetria e tende a se
reduzir progressivamente à medida que a frequência de observações aumenta, perdendo
relevância quando o comportamento da série se aproxima de uma dinâmica quase contínua.

5.3.3 AVALIAÇÃO TEMPO DE EXECUÇÃO DE CADA MODELO

As tabelas apresentadas a seguir descrevem os tempos de estimação, previsão e
tempo total de execução dos modelos considerados, organizados por estrato (baixo, médio
e alto).

Para o cálculo do tempo de execução dos modelos, cada método foi executado em
triplicata, onde o resultado final foi a média das 3 execuções.

102

Para estimação e previsão dos modelos, o conjunto de dados de casos confirma-
dos da COVID-19 foi utilizado novamente. Para o calculo de tempo das previsão, foi
estabelecido um intervalo de previsão 1passo a frente

Tabela 17 – Tempo de estimação de cada modelo (segundos)

Estrato ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Baixo 0.170 0.074 0.377 0.384 1.476 4.675 23.198
Médio 0.209 0.077 0.386 0.396 1.697 5.886 24.858
Alto 0.189 0.090 0.341 0.353 1.532 6.262 34.249

Considerando apenas o tempo de estimação dos parâmetros de cada modelo, observa-
se que o NNETAR se destaca por ser o único a apresentar tempo inferior a 1 centésimo
de segundo.

Os modelos ARMA e GLARMA apresentaram tempos semelhantes, variando entre
0,1 e 0,4 segundos para a estimação.

Os modelos INGARCH foram os que demandaram maior tempo computacional.
Entre eles, os métodos ARMA-Based levaram menos de 2 segundos, enquanto o método
baseado em LASSO apresentou tempo médio de 5 segundos.

Destaca-se o INGARCH via Naive-Search, que registrou tempo médio de 27 se-
gundos, sendo o modelo/método com maior tempo de estimação. Esse resultado já era
esperado, pois esse método estima o maior número de modelos preliminares entre os pro-
cedimentos de seleção automática das ordens dos parâmetros. Ainda assim, nota-se que o
tempo de execução é significativamente superior ao observado no modelo GLARMA. Essa
diferença decorre da instabilidade dos modelos GLARMA, que, como já discutido na seção
de previsão de casos confirmados e óbitos e nas tabelas de comparação de RMSE, apre-
sentam dificuldades de convergência para determinadas ordens de parâmetros. Quando
o método numérico não converge, o processo de estimação é interrompido, reduzindo o
tempo final de execução do algoritmo.

Ao analisar a relação entre o tempo de estimação e a volumetria modelada (estratos
baixo, médio e alto), observa-se que, para modelos e métodos de rápida estimação (tempo
inferior a 5 segundos), não é possível identificar uma relação clara. Já entre aqueles cujo
tempo ultrapassa 5 segundos, nota-se que as maiores volumetrias estão associadas aos
maiores tempos de estimação.

Tabela 18 – Tempo de previsão de cada modelo (segundos)

Estrato ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Baixo 0.037 104.460 0.031 0.030 0.031 0.032 0.031
Médio 0.034 99.904 0.028 0.028 0.031 0.032 0.029
Alto 0.033 99.570 0.027 0.027 0.034 0.034 0.032

103

Analisando o tempo médio de previsão, em segundos, obtido para cada modelo nos
diferentes estratos de volumetria. Observa-se que o NNETAR apresentou um tempo de
previsão substancialmente superior aos demais, variando entre aproximadamente 99 e 104
segundos, enquanto os demais modelos demandaram menos de 0,04 segundos em todos os
estratos. Em termos práticos, o tempo de previsão do NNETAR é cerca de 2.600 vezes
superior ao observado nos demais modelos, evidenciando o elevado custo computacional
associado à sua etapa preditiva.

Esse comportamento pode ser explicado pela estrutura computacional adotada na
etapa de previsão do NNETAR, conforme implementado no pacote fable. Diferentemente
dos modelos lineares (ARMA, GLARMA e INGARCH), que possuem expressões fechadas
ou recorrências analíticas para gerar previsões multi-passo de forma direta, o NNETAR
realiza previsões de forma recursiva: cada passo previsto é utilizado como entrada para o
passo seguinte.

Além disso, o método forecast.NNETAR(), implementado no pacote fable, executa,
por padrão, múltiplas simulações para compor os intervalos de previsão. Assim, o algo-
ritmo repete o processo preditivo diversas vezes, gerando trajetórias futuras independentes
e, em seguida, agregando-as para estimar a distribuição dos valores previstos, realizando
portanto um bootstrap não paramétrico. Esse processo, ainda que essencial para a carac-
terização da incerteza do modelo, aumenta substancialmente o custo computacional.

Outro fator relevante é que, diferentemente dos modelos lineares, o NNETAR
não armazena uma matriz de coeficientes ou estrutura paramétrica simples para cálculo
direto da previsão. Cada iteração envolve a execução completa da rede neural o que
inclui operações de multiplicação de matrizes e aplicação de funções de ativação para
cada simulação e para cada passo à frente no horizonte de previsão.

E portanto, apesar de o NNETAR apresentar tempo de estimação reduzido, como
discutido anteriormente, o custo computacional é transferido para a fase de previsão,
tornando-o o modelo com o maior tempo de execução entre os avaliados

Tabela 19 – Tempo de total (estimação + previsão) de cada modelo (segundos)

Estrato ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

baixo 0.207 104.535 0.408 0.414 1.508 4.707 23.229
medio 0.242 99.980 0.414 0.424 1.728 5.917 22.887
alto 0.222 99.660 0.368 0.380 1.567 6.296 34.281

Ao considerar o tempo total de execução, isto é, a soma dos tempos de estimação
e previsão, observa-se que o modelo NNETAR apresenta, de forma consistente em todos
os estratos, o maior tempo total entre os métodos avaliados, variando entre aproximada-
mente 100 e 104 segundos. Esse resultado reforça a conclusão anterior de que, embora
o NNETAR possua uma etapa de estimação rápida, seu elevado custo computacional na

104

fase de previsão domina o tempo total do processo.

Em comparação, o INGARCH via Naive-Search, que já havia se destacado por
ser o método de estimação mais demorado (cerca de 23 a 34 segundos), apresenta menos
da metade do tempo total de execução do NNETAR. Essa diferença evidencia o peso
desproporcional que o processo de previsão exerce sobre o desempenho computacional
do NNETAR, uma vez que os demais modelos, mesmo os mais complexos na estimação,
mantêm tempos de previsão praticamente desprezíveis.

O modelo ARMA apresentou os menores tempos de execução, variando entre 0.207
e 0.242 segundos, refletindo a simplicidade estrutural do modelo e o fato de que tanto a
estimação quanto a previsão são computacionalmente diretas, sem necessidade de simula-
ções ou processos iterativos complexos.

Os métodos GLARMA, mostraram tempos intermediários, próximos de 0,368 a
0,424 segundos. Embora a previsão desses modelos seja praticamente instantânea devido
à linearidade da estrutura, a estimação iterativa dos parâmetros GLARMA eleva o tempo
total em relação ao ARMA.

Entre os modelos INGARCH, observa-se uma diferenciação clara nos tempos de
execução. O método ARMA-Based apresentou tempos entre 1,508 e 1,728 segundos, evi-
denciando o custo da estimação iterativa sem impactos relevantes na previsão. O via
LASSO demandou um tempo médio maior, entre 4,707 e 6,296 segundos, devido à apli-
cação da regularização LASSO na seleção dos parâmetros do modelo. O INGARCH via
Naive-Search destacou-se como o método mais custoso entre os INGARCH, com tempos
variando de 22,887 a 34,281 segundos. Nesse caso, a elevada duração deve-se à necessi-
dade de avaliar múltiplas combinações de ordens de parâmetros, processo intensivo de
estimação, embora a previsão permaneça rápida.

5.4 ANÁLISE FINAL DAS HIPÓTESES

Com base nos resultados obtidos ao longo das análises, é possível avaliar o grau
de evidência empírica em relação às duas hipóteses formuladas neste estudo.

A primeira hipótese considerava que os modelos de contagem (GLARMA e IN-
GARCH) apresentariam desempenho superior aos modelos tradicionais (ARMA e NNE-
TAR), especialmente em séries com baixa ou média volumetria de eventos. Os resultados
obtidos confirmam essa hipótese de forma consistente. Nos três estratos de casos confirma-
dos analisados para o horizonte de previsão curto, os modelos de contagem apresentaram
o menor erro em 8, 9 e 10 dos 13 municípios analisados, respectivamente. Essa superio-
ridade também se manteve, em grande parte, no horizonte de previsão longo, sobretudo
para os estratos baixo e médio, com 10 e 8 vitórias sobre os modelos tradicionais, respec-
tivamente. Tais resultados indicam que os modelos de contagem capturam de forma mais

105

eficiente a estrutura discreta e heterocedástica das séries epidemiológicas, o que os torna
mais adequados para modelar dados de baixa frequência e alta dispersão.

Entretanto, essa vantagem diminui à medida que a volumetria aumenta. Nos
municípios classificados com alta volumetria, especialmente no horizonte de previsão longo,
observou-se um desempenho mais equilibrado entre as famílias de modelos, com vantagem
inclusive para os modelos tradicionais em 9 dos 13 casos analisados. Esse resultado reforça
o argumento de que, em cenários com maior regularidade temporal, menor dispersão
relativa e maior volumetria absoluta de dados, a modelagem baseada em distribuições
contínuas como a gaussiana assumida pelos modelos ARMA tende a ser suficientemente
eficiente, reduzindo a necessidade de abordagens de contagem.

A segunda hipótese estabelecia que os modelos de contagem exigem menor tempo
de treinamento do que o modelo NNETAR, o que os tornaria mais escaláveis para apli-
cações envolvendo grande número de séries, como no caso de análises municipais. Os
resultados obtidos também confirmam essa hipótese. Embora o NNETAR tenha apre-
sentado bom desempenho em termos de acurácia em alguns contextos, o tempo médio
de estimação por série foi substancialmente maior do que o observado para os modelos
GLARMA e INGARCH. Essa diferença decorre da natureza iterativa do processo de oti-
mização utilizado em redes neurais, que demanda múltiplos ciclos de backpropagation e
ajustes de pesos, em contraste com a estimação direta e mais eficiente dos parâmetros nos
modelos de contagem. Dessa forma, os modelos de contagem mostraram-se não apenas
mais adequados sob o ponto de vista estatístico para séries com baixa contagem, mas
também computacionalmente mais viáveis em cenários que exigem ajuste em larga escala,
reforçando a vantagem prática de sua adoção no contexto epidemiológico considerado.

Em síntese, ambas as hipóteses formuladas foram confirmadas pelos resultados
empíricos. Os modelos de contagem demonstraram desempenho superior em estratos
de baixa volumetria e apresentaram tempos de treinamento significativamente menores
em comparação com o NNETAR, evidenciando que a proposta do pacote fableCount é
coerente tanto do ponto de vista estatístico quanto computacional.

106

6 POPULARIDADE E PLANOS FUTUROS

Ao longo de mais de um ano de existência, o pacote já acumula mais de 4.4 mil
downloads, segundo dados do site DataScienceMeta.

Rank dos pacotes mais baixados no R - DataScienceMeta

Elaborado pelo autor (2025)

O pacote foi lançado inicialmente em abril de 2024, com sua primeira versão (0.0.1)
incluindo os modelos INGARCH e GLARMA. Nessa fase inicial, entretanto, o pacote
ainda não possuía toda a estrutura de modelagem automatizada apresentada ao longo
deste trabalho.

Em maio de 2024, foi lançada a versão 1.0.0, considerada a primeira versão com-
pleta do pacote. Essa atualização introduziu os métodos de modelagem Naive-Search e
ARMA-Based para os modelos INGARCH e GLARMA.

A versão 1.0.1 consistiu em uma atualização de correção de bugs e adicionou alguns
conjuntos de dados de exemplo, permitindo que o usuário se familiarizasse com o pacote
e sua sintaxe de código.

Mais recentemente, a versão 1.1.1 incorporou o método de seleção automática
de ordens de parâmetros via Post-LASSO, atualmente disponível apenas para o modelo
INGARCH.

Como perspectivas futuras para o desenvolvimento do pacote, há diversas linhas
de pesquisa e aprimoramento que podem ser exploradas. O trabalho apresentado aplicou
os dados em conjunto de dados reais, mas é importante entendermos as melhorias dos
modelos de contagem em relação aos modelos usuais em um estudo de simulação e por-
tanto trabalhos futuros com estudos de simulação devem ser realizados, com o objetivo
de avaliar o comportamento dos estimadores e dos métodos de seleção em cenários con-

107

trolados, variando fatores como tamanho amostral, estrutura de dependência temporal e
características de dispersão. Diferentemente das aplicações em dados reais, que refletem
contextos específicos, a simulação permite investigar de forma sistemática o desempenho
dos modelos INGARCH e GLARMA sob diferentes configurações, possibilitando iden-
tificar situações em que cada abordagem apresenta vantagens ou limitações. Esse tipo
de estudo também poderia servir de base para propor ajustes nos algoritmos de estima-
ção, aperfeiçoar a eficiência computacional e avaliar a robustez dos critérios de seleção
automática implementados.

Outro caminho relevante envolve a aplicação dos modelos em séries com sobredis-
persão, um fenômeno comum em dados de contagem que apresentam variância superior
à média. Embora o pacote já disponha de um método para seleção automática de distri-
buições, este ainda não foi explorado neste trabalho, nem em simulações nem em estudos
empíricos, a fim de manter o escopo do projeto focado e conciso. No entanto, investigar o
comportamento do pacote sob condições de sobredispersão pode gerar insights importan-
tes sobre a adequação das distribuições implementadas como Poisson, Binomial Negativa
e suas variantes e sobre a sensibilidade do processo de seleção automática a diferentes
graus de dispersão. Essa análise poderia resultar em melhorias na heurística de escolha
da distribuição, tornando o pacote mais robusto e aplicável a uma gama maior de séries
temporais de contagem.

Por fim, uma direção natural de evolução para o pacote desenvolvido é o desenvol-
vimento e integração do método Post-LASSO para o modelo GLARMA. Atualmente, a
funcionalidade de seleção automática de ordens de parâmetros via LASSO está implemen-
tada apenas para o modelo INGARCH, limitando parcialmente o potencial de automação
do pacote. A extensão desse método ao GLARMA exigirá um estudo detalhado sobre a
estrutura matemática e os aspectos de estimação iterativa característicos desse modelo,
de forma a garantir estabilidade numérica e eficiência computacional. A inclusão dessa
funcionalidade traria maior simetria entre os modelos suportados, além de fortalecer o
propósito central do pacote de fornecer um ambiente unificado e automatizado para mo-
delagem de séries temporais de contagem dentro do ecossistema tidyverts.

108

7 CONCLUSÃO

No início deste trabalho, identificou-se a necessidade de adoção de novos mode-
los para a modelagem preditiva epidemiológica, diante das limitações observadas nas
abordagens então utilizadas pela plataforma JF Salvando Todos. Os modelos ARIMA e
NNETAR, até então empregados, apresentaram uma série de desafios relacionados à esti-
mação, interpretação dos resultados e desempenho computacional, especialmente quando
aplicados a séries com baixos valores de contagem e elevada granularidade temporal. Es-
sas limitações motivaram o desenvolvimento de alternativas mais adequadas à natureza
discreta dos dados epidemiológicos, capazes de fornecer previsões mais consistentes e in-
terpretáveis.

Nesse ambito, o presente trabalho apresentou o desenvolvimento, implementação
e aplicação dos modelos GLARMA e INGARCH no ambiente estatístico R, culminando
na criação do pacote fableCount, um pacote inédito que buscou integrar a modelagem
de séries temporais de contagem ao ecossistema fable. Ao longo do estudo, foi possível
aliar a fundamentação teórica dos modelos às etapas de programação, apresentando não
apenas suas formulações matemáticas e propriedades estatísticas, mas também a forma
como foram traduzidas em funções computacionais voltadas à usabilidade, eficiência e
automação.

A implementação dos modelos de contagem permitiu que o pacote incorporasse
funcionalidades avançadas de estimação e previsão, contemplando a utilização das dis-
tribuições Poisson e Binomial Negativa, além de métodos computacionais robustos para
cálculo de previsões e utilização em fluxo ideal de modelagem, chamado de pipeline de
modelagem. A etapa de desenvolvimento computacional buscou seguir a filosofia de au-
tomação e reprodutibilidade proposta por (Wickham e Bryan 2023), resultando em uma
ferramenta que combina praticidade para o usuário com rigor estatístico.

Outro ponto de destaque foi a implementação dos algoritmos de modelagem au-
tomatizada, que tornam o pacote capaz de executar de forma autônoma a seleção de
distribuições, a busca de ordens de parâmetros e a escolha do melhor modelo preditivo.
Os métodos Naive-Search, ARMA-Based e Post-LASSO deram aos usuários do pacote,
flexibilidade e capacidade de adaptação a diferentes tipos de séries temporais, promovendo
uma modelagem mais eficiente e acessível, especialmente em contextos que exigem alto
volume de processamento, como aplicações em plataformas epidemiológicas.

A aplicação empírica em dados reais reforçou a importância dos modelos de con-
tagem na prática estatística. Os resultados demonstraram ganhos expressivos em termos
de desempenho preditivo e computacional, sobretudo em séries com baixos valores de
contagem, nas quais os modelos clássicos, como ARIMA, e os modelos baseados em redes
neurais apresentaram um tempo de treinamento substancialmente maior que os demais

109

modelos. Assim, comprovou-se que os modelos de contagem, além de oferecerem melhor
aderência à natureza discreta dos dados, também produzem previsões mais coerentes e
com menor custo computacional em contextos epidemiológicos.

O pacote fableCount já apresenta uma estrutura sólida e funcional, reunindo os
principais elementos teóricos e computacionais necessários para a modelagem de séries
temporais de contagem. Entretanto, há espaço para avanços significativos. Estudos futu-
ros podem contemplar a realização de experimentos de simulação em ambientes controla-
dos, com o objetivo de avaliar o desempenho dos estimadores sob diferentes configurações
de dependência temporal e dispersão; a aplicação do método de seleção automática de
distribuições em séries com sobredispersão, permitindo testar sua efetividade em situa-
ções práticas; e, finalmente, o desenvolvimento do método Post-LASSO para o modelo
GLARMA, de forma a expandir as funcionalidades já existentes para o modelo INGARCH.

Em síntese, este trabalho consolida uma contribuição relevante tanto para a litera-
tura sobre séries temporais de contagem quanto para a comunidade usuária do software R,
ao oferecer uma ferramenta prática, automatizada e alinhada às tendências modernas de
modelagem estatística. Acredita-se que o fableCount possa servir como base para novas
pesquisas e aplicações, estimulando o avanço de métodos voltados à análise de dados dis-
cretos e fortalecendo a integração entre teoria estatística e desenvolvimento computacional
no contexto das séries temporais.

110

REFERÊNCIAS

Benjamin e Stasinopoulos 1998BENJAMIN, R. R. M.; STASINOPOULOS, M.
Modelling exponential family time series data. In: Statistical Modelling: Proceedings of
the 13th International Workshop on Stastical Modelling. [S.l.: s.n.], 1998.

Bollerslev 1986BOLLERSLEV, T. Generalized autoregressive conditional
heteroskedasticity. Journal of econometrics, Elsevier, v. 31, n. 3, p. 307–327, 1986.

Cameron e Trivedi 1990CAMERON, A. C.; TRIVEDI, P. K. Regression-based tests for
overdispersion in the poisson model. Journal of econometrics, Elsevier, v. 46, n. 3, p.
347–364, 1990.

Christou e Fokianos 2014CHRISTOU, V.; FOKIANOS, K. Quasi-likelihood inference for
negative binomial time series models. Journal of Time Series Analysis, Wiley Online
Library, v. 35, n. 1, p. 55–78, 2014.

5CREAL, D.; KOOPMAN, S. J.; LUCAS, A. A general framework for observation
driven time-varying parameter models. Tinbergen Institute Discussion paper, 2008.

6DAVIS, R. A.; DUNSMUIR, W. T.; STREETT, S. B. Observation-driven models for
poisson counts. Biometrika, Oxford University Press, v. 90, n. 4, p. 777–790, 2003.

Davis et al. 2021DAVIS, R. A. et al. Count time series: A methodological review.
Journal of the American Statistical Association, Taylor & Francis, v. 116, n. 535, p.
1533–1547, 2021.

Davis e Liu 2012DAVIS, R. A.; LIU, H. Theory and inference for a class of
observation-driven models with application to time series of counts. arXiv preprint
arXiv:1204.3915, 2012.

Dunsmuir e Scott 2015DUNSMUIR, W. T.; SCOTT, D. J. The glarma package for
observation-driven time series regression of counts. Journal of Statistical Software, v. 67,
p. 1–36, 2015.

10FERLAND, R.; LATOUR, A.; ORAICHI, D. Integer-valued garch process. Journal of
time series analysis, Wiley Online Library, v. 27, n. 6, p. 923–942, 2006.

Fokianos 2011FOKIANOS, K. Some recent progress in count time series. Statistics,
Taylor & Francis, v. 45, n. 1, p. 49–58, 2011.

Fokianos 2012FOKIANOS, K. Count time series models. In: Handbook of statistics.
[S.l.]: Elsevier, 2012. v. 30, p. 315–347.

13FOKIANOS, K.; RAHBEK, A.; TJØSTHEIM, D. Poisson autoregression. Journal of
the American Statistical Association, Taylor & Francis, v. 104, n. 488, p. 1430–1439,
2009.

Genetski 1978GENETSKI, S. A. R. J. Longrange forecasting: From crystal ball to
computer. jscottarmstrong.com, 1978.

Heinen 2003HEINEN, A. Modelling time series count data: an autoregressive
conditional poisson model. Available at SSRN 1117187, 2003.

111

Hyndman e Athanasopoulos 2021HYNDMAN, R. J.; ATHANASOPOULOS, G.
Forecasting: Principles and Practice (3rd ed.). Melbourne, Australia: OTexts, 2021.
Disponível em: <https://otexts.com/fpp3/>.

Hyndman e Khandakar 2008HYNDMAN, R. J.; KHANDAKAR, Y. Automatic time
series forecasting: the forecast package for r. Journal of statistical software, v. 27, p.
1–22, 2008.

Hyndman e Koehler 2006HYNDMAN, R. J.; KOEHLER, A. B. Another look at
measures of forecast accuracy. International journal of forecasting, Elsevier, v. 22, n. 4,
p. 679–688, 2006.

Miranda 2014MIRANDA, I. P. Heringer de. Comparação de diferentes Métodos de
Previsão em Séries Temporais com valores discrepantes. Monografia (Monografia) —
Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 2014.

Nelder e Wedderburn 1972NELDER, J. A.; WEDDERBURN, R. W. Generalized linear
models. Journal of the Royal Statistical Society Series A: Statistics in Society, Oxford
University Press, v. 135, n. 3, p. 370–384, 1972.

Pacheco 2021PACHECO, P. H. d. M. Modelagem de dados longitudinais complexos no
R: desenvolvimento de um pacote estatístico. 2021. Monografia (Graduação em
Estatística) Universidade Federal de Juiz de Fora, Juiz de Fora, MG. Disponível em:
<https://repositorio.ufjf.br/jspui/bitstream/ufjf/13437/1/pedrohenriquedemesquitapacheco.pdf>.

Parzen 1961PARZEN, E. An approach to time series analysis. The Annals of
Mathematical Statistics, Institute of Mathematical Statistics, v. 32, n. 4, p. 951–989,
1961.

Prado 2022PRADO, M. Relato de experiência: comunicando ciência com a plataforma jf
de acompanhamento estatístico da pandemia de covid-19. Intercom Sociedade Brasileira
de Estudos Interdisciplinares da Comunicação 45ž Congresso Brasileiro de Ciências da
Comunicação UFPB, 2022. Acessado em [data de acesso]. Disponível em:
<https://db138ea9-cf2c-4ef8-9a00-
41762a1078d0.filesusr.com/ugd/b82b285ac48403829a4274b142ab42f8b80c8e.pdf>.

Rydberg 2000RYDBERG, T. H. Realistic statistical modelling of financial data.
International Statistical Review, Wiley Online Library, v. 68, n. 3, p. 233–258, 2000.

Streett 2000STREETT, S. B. Some observation driven models for time series. [S.l.]:
Colorado State University, 2000.

Tjøstheim 2012TJØSTHEIM, D. Some recent theory for autoregressive count time
series. Test, Springer, v. 21, n. 3, p. 413–438, 2012.

Tran e Reed 2004TRAN, N.; REED, D. A. Automatic arima time series modeling for
adaptive i/o prefetching. IEEE Transactions on parallel and distributed systems, IEEE,
v. 15, n. 4, p. 362–377, 2004.

Wang e Li 2011WANG, C.; LI, W. K. On the autopersistence functions and the
autopersistence graphs of binary autoregressive time series. Journal of Time Series
Analysis, Wiley Online Library, v. 32, n. 6, p. 639–646, 2011.

112

Weiß e Schweer 2015WEISS, C. H.; SCHWEER, S. Detecting overdispersion in inarch
(1) processes. Statistica Neerlandica, Wiley Online Library, v. 69, n. 3, p. 281–297, 2015.

Wickham 2014WICKHAM, H. Tidy data. Journal of statistical software, v. 59, p. 1–23,
2014.

Wickham e Bryan 2023WICKHAM, H.; BRYAN, J. R packages. [S.l.]: "O’Reilly Media,
Inc.", 2023.

Zou 2006ZOU, H. The adaptive lasso and its oracle properties. Journal of the American
statistical association, Taylor & Francis, v. 101, n. 476, p. 1418–1429, 2006.

113

APÊNDICE A – Código utilizado para aplicação

Listing .1 – Trecho de código utilizado na modelagem preditiva
1

2

3

4 covid _ dataset =
5 dplyr :: bind_rows(
6 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2020_ Parte1 _01 ago2025 .csv", delim = ";"),
7 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2020_ Parte2 _01 ago2025 .csv", delim = ";"),
8 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2021_ Parte1 _01 ago2025 .csv", delim = ";"),
9 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2021_ Parte2 _01 ago2025 .csv", delim = ";"),
10 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2022_ Parte1 _01 ago2025 .csv", delim = ";"),
11 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2022_ Parte2 _01 ago2025 .csv", delim = ";"),
12 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2023_ Parte1 _01 ago2025 .csv", delim = ";"),
13 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2023_ Parte2 _01 ago2025 .csv", delim = ";"),
14 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2024_ Parte1 _01 ago2025 .csv", delim = ";"),
15 readr :: read_ delim("D:/TCC/dados /HIST_ PAINEL _ COVIDBR _01 ago2025 /HIST_

PAINEL _ COVIDBR _2024_ Parte2 _01 ago2025 .csv", delim = ";")
16)
17

18 covid _br_ts = covid _ dataset |>
19 dplyr :: filter (regiao == " Brasil ") |>
20 dplyr :: select (-2,-3,-4,-5,-6,-7) |>
21 dplyr :: mutate (semana _epi = lubridate :: epiweek (data)) |>
22 dplyr :: relocate (semana _epi , . before = data) |>
23 dplyr :: select (-data , -semanaEpi) |>
24 dplyr :: group _by(semana _epi) |>
25 dplyr :: summarise (
26 casos _conf = sum(casosNovos),
27 obitos _conf = sum(obitosNovos)
28) |>
29 tsibble :: as_ tsibble (index = semana _epi)
30

31 # #############
32 set.seed (4390)
33

114

34 # Amostrando indices de municipos via amostragem estratificada
35

36 casos _por_ municipio = covid _ dataset |>
37 dplyr :: filter (
38 estado == "MG",
39 is.na(codmun) == F,
40 data >= lubridate :: ymd("2024 -01 -01"),
41 data <= lubridate :: ymd("2024 -12 -31")
42) |>
43 dplyr :: group _by(codmun , municipio) |>
44 dplyr :: summarise (total _casos = sum(casosNovos , na.rm = TRUE), . groups

= "drop") |>
45 dplyr :: filter (total _casos >= 10) |> # remover municípios com menos de

10 casos
46 dplyr :: mutate (
47 estrato = dplyr :: case_when(
48 total _ casos > 250 ~ "alto",
49 total _ casos >= 100 ~ "medio ",
50 total _ casos >= 10 ~ "baixo "
51)
52) |>
53 dplyr :: group _by(estrato) |>
54 dplyr :: slice _ sample (n = 13) |>
55 dplyr :: ungroup ()
56

57 obitos _por_ municipio = covid _ dataset |>
58 dplyr :: filter (
59 estado == "MG",
60 is.na(codmun) == F,
61 data >= lubridate :: ymd("2024 -01 -01"),
62 data <= lubridate :: ymd("2024 -12 -31")
63) |>
64 dplyr :: group _by(codmun , municipio) |>
65 dplyr :: summarise (total _ obitos = sum(obitosNovos , na.rm = TRUE), .

groups = "drop") |>
66 dplyr :: filter (total _ obitos >= 1) |> # remover municípios com menos de

5 óbitos
67 dplyr :: mutate (
68 estrato = dplyr :: case_when(
69 total _ obitos > 20 ~ "alto",
70 total _ obitos >= 10 ~ "medio ",
71 total _ obitos >= 5 ~ "baixo ",
72 total _ obitos >= 1 ~ " baixissimo "
73)
74) |>
75 dplyr :: group _by(estrato) |>
76 dplyr :: slice _ sample (n = 12) |>

115

77 dplyr :: ungroup ()
78

79 #1. Retirando dados por municipios amostrados
80 dados _ obitos _mg = covid _ dataset |>
81 dplyr :: filter (
82 estado == "MG",
83 data >= lubridate :: ymd("2024 -01 -01") & data <= lubridate :: ymd("

2024 -12 -31"),
84) |>
85 dplyr :: filter (codmun %in% obitos _por_ municipio $ codmun) |>
86 dplyr :: select (-regiao ,
87 -estado ,
88 -coduf ,
89 -codRegiaoSaude ,
90 -nomeRegiaoSaude ,
91 -populacaoTCU2019 ,
92) |>
93 dplyr :: mutate (semana _epi = lubridate :: epiweek (data)) |>
94 dplyr :: relocate (semana _epi , . before = data) |>
95 dplyr :: select (-data , -semanaEpi) |>
96 dplyr :: group _by(semana _epi , municipio) |>
97 dplyr :: summarise (
98 obitos _conf = sum(obitosNovos)
99) |>

100 dplyr :: mutate (obitos _conf = dplyr :: if_else(obitos _conf < 0, 0, obitos _
conf)) |>

101 dplyr :: ungroup () |>
102 dplyr :: mutate (obitos _conf = dplyr :: if_else(obitos _conf >=0, obitos _conf

,0)) |>
103 tsibble :: as_ tsibble (index = semana _epi , key = municipio)
104

105

106 dados _casos _mg = covid _ dataset |>
107 dplyr :: filter (
108 estado == "MG",
109 data >= lubridate :: ymd("2024 -01 -01") & data <= lubridate :: ymd("

2024 -12 -31"),
110) |>
111 dplyr :: select (-regiao ,
112 -estado ,
113 -coduf ,
114 -codRegiaoSaude ,
115 -nomeRegiaoSaude ,
116 -populacaoTCU2019 ,
117) |>
118 dplyr :: filter (codmun %in% casos _por_ municipio $ codmun) |>
119 dplyr :: mutate (semana _epi = lubridate :: epiweek (data)) |>

116

120 dplyr :: relocate (semana _epi , . before = data) |>
121 dplyr :: select (-data , -semanaEpi) |>
122 dplyr :: group _by(semana _epi , municipio) |>
123 dplyr :: summarise (
124 casos _conf = sum(casosNovos)
125) |>
126 dplyr :: mutate (casos _conf = dplyr :: if_else(casos _conf < 0, 0, casos _

conf)) |>
127 dplyr :: ungroup () |>
128 tsibble :: as_ tsibble (index = semana _epi , key = municipio)
129

130

131 # 3.
132 # Modelando Casos Confirmados - Via TSCV
133

134 casos _mg_model _tscv = dados _casos _mg |>
135 tsibble :: stretch _ tsibble (. init = 48, .step = 1) |>
136 fabletools :: model (
137 arma = ARIMA(casos _conf),
138 nnetar = NNETAR (casos _conf),
139 ing_naive = INGARCH (casos _conf , algorithm = "naive _ search ", distr =

" poisson "),
140 ing_arma = INGARCH (casos _conf , algorithm = "arma_to_ ingarch ", distr

= " poisson "),
141 ing_lasso = INGARCH (casos _conf , algorithm = "post_lasso ", distr = "

poisson "),
142 gla_arma = GLARMA (casos _conf , algorithm = "arma_to_ glarma ", distr =

" poisson "),
143 gla_naive = GLARMA (casos _conf , algorithm = " naive _ search _ glarma ",

distr = " poisson ")
144)
145

146

147 ## 3.1 - Hipotese de RMSE
148 casos _mg_ forecast _tscv = casos _mg_model _tscv |>
149 forecast (h = 1) |>
150 accuracy (dados _casos _mg) |>
151 dplyr :: filter (is.nan(RMSE) == F)
152

153

154 casos _mg_ forecast _tscv_raw = casos _mg_model _tscv |>
155 dplyr :: select (arma , nnetar) |>
156 dplyr :: slice _head(n = 4) |>
157 forecast (h = 1)
158

159

160

117

161 casos _mg_tscv_ estratos = casos _mg_ forecast _tscv |>
162 dplyr :: left_join(casos _por_municipio , by = " municipio ") |>
163 dplyr :: select (1,2,5, 14) |>
164 tidyr :: pivot _wider(names _from = .model , values _from = RMSE)
165

166

167

168

169 tempo _casos _mg_ forecast _tscv = microbenchmark (
170 dados _bench |>
171 fabletools :: model (arma = ARIMA(casos _conf)),
172 dados _bench |>
173 fabletools :: model (ing_naive = INGARCH (casos _conf , algorithm = " naive

_ search ", distr = " poisson ")),
174 dados _bench |>
175 fabletools :: model (ing_arma = INGARCH (casos _conf , algorithm = "arma_

to_ ingarch ", distr = " poisson ")),
176 dados _bench |>
177 fabletools :: model (ing_lasso = INGARCH (casos _conf , algorithm = "post

_lasso ", distr = " poisson ")),
178 dados _bench |>
179 fabletools :: model (gla_arma = GLARMA (casos _conf , algorithm = "arma_to

_ glarma ", distr = " poisson ")),
180 dados _bench |>
181 fabletools :: model (gla_naive = GLARMA (casos _conf , algorithm = "naive _

search _ glarma ", distr = " poisson ")),
182 times = 1)
183

184 ##
185

186 # Modelando Casos Confirmados - Via OOS
187 casos _mg_model _oos = dados _casos _mg |>
188 dplyr :: filter (semana _epi <= 48) |>
189 fabletools :: model (
190 arma = ARIMA(casos _conf),
191 nnetar = NNETAR (casos _conf),
192 ing_naive = INGARCH (casos _conf , algorithm = "naive _ search ", distr =

" poisson "),
193 ing_arma = INGARCH (casos _conf , algorithm = "arma_to_ ingarch ", distr

= " poisson "),
194 ing_lasso = INGARCH (casos _conf , algorithm = "post_lasso ", distr = "

poisson "),
195 gla_arma = GLARMA (casos _conf , algorithm = "arma_to_ glarma ", distr =

" poisson "),
196 gla_naive = GLARMA (casos _conf , algorithm = " naive _ search _ glarma ",

distr = " poisson ")
197)

118

198

199 casos _mg_ forecast _oss_raw = casos _mg_ model _oos |>
200 forecast (h = 4)
201

202 casos _mg_ forecast _oss = casos _mg_ forecast _oss_raw |>
203 accuracy (dados _casos _mg) |>
204 dplyr :: filter (is.nan(RMSE) == F)
205

206

207 casos _mg_oss_ estratos = casos _mg_ forecast _oss |>
208 dplyr :: left_join(casos _por_municipio , by = " municipio ") |>
209 dplyr :: select (1,2,5, 14) |>
210 tidyr :: pivot _wider(names _from = .model , values _from = RMSE)
211

212

213

214 # 4.
215 # Modelando Obitos Confirmados - Via TSCV
216

217 obitos _mg_model _tscv = dados _ obitos _mg |>
218 tsibble :: stretch _ tsibble (. init = 48, .step = 1) |>
219 fabletools :: model (
220 arma = ARIMA(obitos _conf),
221 nnetar = NNETAR (obitos _conf),
222 ing_naive = INGARCH (obitos _conf , algorithm = " naive _ search ", distr =

" poisson "),
223 ing_arma = INGARCH (obitos _conf , algorithm = "arma_to_ ingarch ", distr

= " poisson "),
224 ing_lasso = INGARCH (obitos _conf , algorithm = "post_lasso ", distr =

" poisson "),
225 gla_arma = GLARMA (obitos _conf , algorithm = "arma_to_ glarma ", distr =

" poisson "),
226 gla_naive = GLARMA (obitos _conf , algorithm = "naive _ search _ glarma ",

distr = " poisson ")
227)
228

229

230

231 ## 4.1 - Hipotese de RMSE
232 obitos _mg_ forecast _tscv = obitos _mg_model _tscv |>
233 forecast (h = 1) |>
234 accuracy (dados _ obitos _mg) |>
235 dplyr :: filter (is.nan(RMSE) == F)
236

237

238 obitos _mg_tscv_ estratos = obitos _mg_ forecast _tscv |>
239 dplyr :: left_join(obitos _por_municipio , by = " municipio ") |>

119

240 dplyr :: select (1,2,5, 14) |>
241 tidyr :: pivot _wider(names _from = .model , values _from = RMSE)
242

243 # Modelando Obitos Confirmados - Via OSS
244

245 obitos _mg_model _oos = dados _ obitos _mg |>
246 dplyr :: filter (semana _epi <= 48) |>
247 fabletools :: model (
248 arma = ARIMA(obitos _conf),
249 nnetar = NNETAR (obitos _conf),
250 ing_naive = INGARCH (obitos _conf , algorithm = " naive _ search ", distr =

" poisson "),
251 ing_arma = INGARCH (obitos _conf , algorithm = "arma_to_ ingarch ", distr

= " poisson "),
252 ing_lasso = INGARCH (obitos _conf , algorithm = "post_lasso ", distr =

" poisson "),
253 gla_arma = GLARMA (obitos _conf , algorithm = "arma_to_ glarma ", distr =

" poisson "),
254 gla_naive = GLARMA (obitos _conf , algorithm = "naive _ search _ glarma ",

distr = " poisson ")
255)
256

257 obitos _mg_ forecast _oss_raw = obitos _mg_model _oos |>
258 forecast (h = 4)
259

260 obitos _mg_ forecast _oss = obitos _mg_ forecast _oss_raw |>
261 accuracy (dados _ obitos _mg) |>
262 dplyr :: filter (is.nan(RMSE) == F)
263

264

265 obitos _mg_oss_ estratos = obitos _mg_ forecast _oss |>
266 dplyr :: left_join(obitos _por_municipio , by = " municipio ") |>
267 dplyr :: select (1,2,5, 14) |>
268 tidyr :: pivot _wider(names _from = .model , values _from = RMSE)

Listing .2 – Códifo utilizado para análise do tempo de execução de cada modelo
1

2

3 ## --- Definição de métodos e estratos ---
4 metodos = c("arma", " nnetar ", "gla_arma", "gla_naive ",
5 "ing_arma", "ing_ naive ", "ing_lasso ")
6

7 estratos = c(" baixo ", "medio ", "alto")
8

9 ## --- Inicialização da matriz 3D de tempos ---
10 tempos _ execucao = array (NA , dim = c(length (metodos), 3, length (estratos)

),

120

11 dimnames = list(
12 metodo = metodos ,
13 repeticao = paste0 ("rep_", 1:3) ,
14 estrato = estratos
15))
16

17

18

19 ## --- Lista para facilitar iteração entre estratos ---
20 dados _lista = list(baixo = dados _ casos _mg_baixo ,
21 medio = dados _ casos _mg_medio ,
22 alto = dados _ casos _mg_alto)
23

24 ## - Matriz dos modelos
25

26 modelos _estim _ lista <- vector ("list", length (metodos))
27 names (modelos _ estim _lista) <- metodos
28

29

30 ## --- Loop principal ---
31 for (rep in 1:3) {
32 cat("\ nIniciando␣repetição ", rep , "...\n")
33

34 for (estrato in estratos) {
35 cat("␣␣Estrato :", estrato , "\n")
36 dados = dados _ lista [[estrato]]
37

38 # ARIMA
39 t_0 = Sys.time ()
40 modelos _ estim _ lista [["arma"]][[estrato]] = fabletools :: model (
41 dados ,
42 arma = ARIMA(casos _conf)
43)
44 t_1 = Sys.time ()
45 tempos _ execucao ["arma", rep , estrato] = as. numeric (t_1 - t_0, units

= "secs")
46

47 # NNETAR
48 t_0 = Sys.time ()
49 modelos _ estim _ lista [[" nnetar "]][[estrato]] = fabletools :: model (
50 dados ,
51 nnetar = NNETAR (casos _conf)
52)
53 t_1 = Sys.time ()
54 tempos _ execucao [" nnetar ", rep , estrato] = as. numeric (t_1 - t_0,

units = "secs")
55

121

56 # GLARMA (arma_to_ glarma)
57 t_0 = Sys.time ()
58 modelos _ estim _ lista [["gla_arma"]][[estrato]] = fabletools :: model (
59 dados ,
60 gla_arma = GLARMA (casos _conf , algorithm = "arma_to_ glarma ", distr

= " poisson ")
61)
62 t_1 = Sys.time ()
63 tempos _ execucao ["gla_arma", rep , estrato] = as. numeric (t_1 - t_0,

units = "secs")
64

65 # GLARMA (naive _ search _ glarma)
66 t_0 = Sys.time ()
67 modelos _ estim _ lista [["gla_naive "]][[estrato]] = fabletools :: model (
68 dados ,
69 gla_naive = GLARMA (casos _conf , algorithm = " naive _ search _ glarma ",

distr = " poisson ")
70)
71 t_1 = Sys.time ()
72 tempos _ execucao ["gla_naive ", rep , estrato] = as. numeric (t_1 - t_0,

units = "secs")
73

74 # INGARCH (arma_to_ ingarch)
75 t_0 = Sys.time ()
76 modelos _ estim _ lista [["ing_arma"]][[estrato]] = fabletools :: model (
77 dados ,
78 ing_arma = INGARCH (casos _conf , algorithm = "arma_to_ ingarch ",

distr = " poisson ")
79)
80 t_1 = Sys.time ()
81 tempos _ execucao ["ing_arma", rep , estrato] = as. numeric (t_1 - t_0,

units = "secs")
82

83 # INGARCH (naive _ search)
84 t_0 = Sys.time ()
85 modelos _ estim _ lista [["ing_naive "]][[estrato]] = fabletools :: model (
86 dados ,
87 ing_naive = INGARCH (casos _conf , algorithm = "naive _ search ", distr

= " poisson ")
88)
89 t_1 = Sys.time ()
90 tempos _ execucao ["ing_naive ", rep , estrato] = as. numeric (t_1 - t_0,

units = "secs")
91

92 # INGARCH (post_lasso)
93 t_0 = Sys.time ()
94 modelos _ estim _ lista [["ing_lasso "]][[estrato]] = fabletools :: model (

122

95 dados ,
96 ing_lasso = INGARCH (casos _conf , algorithm = "post_lasso ", distr =

" poisson ")
97)
98 t_1 = Sys.time ()
99 tempos _ execucao ["ing_lasso ", rep , estrato] = as. numeric (t_1 - t_0,

units = "secs")
100 }
101 }
102

103 tempos _estim _spec = tempos _ execucao |>
104 as_ tibble (rownames = " metodo ") |>
105 pivot _ longer (- metodo) |>
106 mutate (estrato = stringr :: str_ extract (name , "(? <=\\.) .+$"),
107 rep = stringr :: str_ extract (name , "(?<= rep_)[0 -9]+")) |>
108 select (-name) |>
109 group _by(metodo , estrato) |>
110 summarise (tempo = mean(value))
111

112 tempos _estim _spec |>
113 pivot _wider(names _from = metodo , values _from = tempo) |>
114 relocate (nnetar , . before = gla_arma)
115

116

117 # Definir métodos e estratos
118 metodos = c("arma", " nnetar ", "gla_arma", "gla_naive ",
119 "ing_arma", "ing_ naive ", "ing_lasso ")
120 estratos = c(" baixo ", "medio ", "alto")
121

122 # Inicializar array para armazenar tempos de previsão (método Œ
repetição Œ estrato)

123 tempos _ predict = array (NA ,
124 dim = c(length (metodos), 3, length (estratos)),
125 dimnames = list(metodos , paste0 ("rep_", 1:3) ,

estratos))
126

127

128 horizonte = 1 # número de passos à frente para forecast
129

130 for (rep in 1:3) {
131 cat("\ nRodando␣previsão␣-␣repetição ", rep , "...\n")
132

133 for (e in estratos) {
134 cat("␣Estrato :", toupper (e), "\n")
135

136 for (m in metodos) {
137 t_0 = Sys.time ()

123

138 modelos _ estim _lista [[m]][[e]] |> forecast (h = horizonte)
139 t_1 = Sys.time ()
140

141 tempos _ predict [m, rep , e] = as. numeric (t_1 - t_0, units = "secs")
142 }
143 }
144 }
145

146 tempos _ predict _spec = tempos _ predict |>
147 as_ tibble (rownames = " metodo ") |>
148 pivot _ longer (- metodo) |>
149 mutate (estrato = stringr :: str_ extract (name , "(? <=\\.) .+$"),
150 rep = stringr :: str_ extract (name , "(?<= rep_)[0 -9]+")) |>
151 select (-name) |>
152 group _by(metodo , estrato) |>
153 summarise (tempo = mean(value))
154

155 tempos _ predict _spec |>
156 pivot _wider(names _from = metodo , values _from = tempo) |>
157 relocate (nnetar , . before = gla_arma)
158

159

160 # Loop de 3 repetições
161 for (rep in 1:3) {
162 cat("\ nRodando␣previsão␣-␣repetição ", rep , "...\n")
163

164 # ---------- ESTRATO BAIXO ----------
165 cat("␣Estrato :␣BAIXO \n")
166

167 t_0 = Sys.time (); modelos _estim _lista $arma$baixo |> forecast (h = 1); t
_1 = Sys.time ()

168 tempos _ predict ["arma", rep , " baixo "] = as. numeric (t_1 - t_0, units = "
secs")

169

170 t_0 = Sys.time (); modelos _estim _lista $ nnetar $baixo |> forecast (h = 1);
t_1 = Sys.time ()

171 tempos _ predict [" nnetar ", rep , " baixo "] = as. numeric (t_1 - t_0, units =
"secs")

172

173 t_0 = Sys.time (); modelos _estim _lista gla_armabaixo |> forecast (h =
1); t_1 = Sys.time ()

174 tempos _ predict ["gla_arma", rep , " baixo "] = as. numeric (t_1 - t_0, units
= "secs")

175

176 t_0 = Sys.time (); modelos _estim _lista $gla_naive $ baixo |> forecast (h =
1); t_1 = Sys.time ()

177 tempos _ predict ["gla_naive ", rep , "baixo "] = as. numeric (t_1 - t_0,

124

units = "secs")
178

179 t_0 = Sys.time (); modelos _estim _lista ing_armabaixo |> forecast (h =
1); t_1 = Sys.time ()

180 tempos _ predict ["ing_arma", rep , " baixo "] = as. numeric (t_1 - t_0, units
= "secs")

181

182 t_0 = Sys.time (); modelos _estim _lista $ing_naive $ baixo |> forecast (h =
1); t_1 = Sys.time ()

183 tempos _ predict ["ing_naive ", rep , "baixo "] = as. numeric (t_1 - t_0,
units = "secs")

184

185 t_0 = Sys.time (); modelos _estim _lista $ing_lasso $ baixo |> forecast (h =
1); t_1 = Sys.time ()

186 tempos _ predict ["ing_lasso ", rep , "baixo "] = as. numeric (t_1 - t_0,
units = "secs")

187

188 # ---------- ESTRATO MÉDIO ----------
189 cat("␣Estrato :␣MÉDIO \n")
190

191 t_0 = Sys.time (); modelos _estim _lista $arma$medio |> forecast (h = 1); t
_1 = Sys.time ()

192 tempos _ predict ["arma", rep , " medio "] = as. numeric (t_1 - t_0, units = "
secs")

193

194 t_0 = Sys.time (); modelos _estim _lista $ nnetar $medio |> forecast (h = 1);
t_1 = Sys.time ()

195 tempos _ predict [" nnetar ", rep , " medio "] = as. numeric (t_1 - t_0, units =
"secs")

196

197 t_0 = Sys.time (); modelos _estim _lista gla_armamedio |> forecast (h =
1); t_1 = Sys.time ()

198 tempos _ predict ["gla_arma", rep , " medio "] = as. numeric (t_1 - t_0, units
= "secs")

199

200 t_0 = Sys.time (); gla_naive _medio _estim |> forecast (h = 1); t_1 = Sys.
time ()

201 tempos _ predict ["gla_naive ", rep , "medio "] = as. numeric (t_1 - t_0,
units = "secs")

202

203 t_0 = Sys.time (); ing_arma_ medio _ estim |> forecast (h = 1); t_1 = Sys.
time ()

204 tempos _ predict ["ing_arma", rep , " medio "] = as. numeric (t_1 - t_0, units
= "secs")

205

206 t_0 = Sys.time (); ing_naive _medio _estim |> forecast (h = 1); t_1 = Sys.
time ()

125

207 tempos _ predict ["ing_naive ", rep , "medio "] = as. numeric (t_1 - t_0,
units = "secs")

208

209 t_0 = Sys.time (); ing_lasso _medio _estim |> forecast (h = 1); t_1 = Sys.
time ()

210 tempos _ predict ["ing_lasso ", rep , "medio "] = as. numeric (t_1 - t_0,
units = "secs")

211

212 # ---------- ESTRATO ALTO ----------
213 cat("␣Estrato :␣ALTO\n")
214

215 t_0 = Sys.time (); arma_alto_estim |> forecast (h = 1); t_1 = Sys.time ()
216 tempos _ predict ["arma", rep , "alto"] = as. numeric (t_1 - t_0, units = "

secs")
217

218 t_0 = Sys.time (); nnetar _alto_estim |> forecast (h = 1); t_1 = Sys.time
()

219 tempos _ predict [" nnetar ", rep , "alto"] = as. numeric (t_1 - t_0, units =
"secs")

220

221 t_0 = Sys.time (); gla_arma_alto_estim |> forecast (h = 1); t_1 = Sys.
time ()

222 tempos _ predict ["gla_arma", rep , "alto"] = as. numeric (t_1 - t_0, units
= "secs")

223

224 t_0 = Sys.time (); gla_naive _alto_ estim |> forecast (h = 1); t_1 = Sys.
time ()

225 tempos _ predict ["gla_naive ", rep , "alto"] = as. numeric (t_1 - t_0, units
= "secs")

226

227 t_0 = Sys.time (); ing_arma_alto_estim |> forecast (h = 1); t_1 = Sys.
time ()

228 tempos _ predict ["ing_arma", rep , "alto"] = as. numeric (t_1 - t_0, units
= "secs")

229

230 t_0 = Sys.time (); ing_naive _alto_ estim |> forecast (h = 1); t_1 = Sys.
time ()

231 tempos _ predict ["ing_naive ", rep , "alto"] = as. numeric (t_1 - t_0, units
= "secs")

232

233 t_0 = Sys.time (); ing_lasso _alto_ estim |> forecast (h = 1); t_1 = Sys.
time ()

234 tempos _ predict ["ing_lasso ", rep , "alto"] = as. numeric (t_1 - t_0, units
= "secs")

235 }
236

237 ## Tempo de estimação do modelo

126

238 # Definir métodos e inicializar matriz de tempos de previsão
239 metodos = c("arma", " nnetar ", "gla_arma", "gla_naive ",
240 "ing_arma", "ing_ naive ", "ing_lasso ")
241

242 tempos _ predict = matrix (NA , nrow = length (metodos), ncol = 3,
243 dimnames = list(metodos , paste0 ("rep_", 1:3)))
244

245 # Loop de 3 repetições
246 for (rep in 1:3) {
247

248 cat("\ nRodando␣previsão␣-␣repetição ", rep , "...\n")
249

250 # ARIMA
251 t_0 = Sys.time ()
252 arma_baixo _estim |> forecast (h = 1)
253 t_1 = Sys.time ()
254 tempos _ predict ["arma", rep] = as. numeric (t_1 - t_0, units = "secs")
255

256 # NNETAR
257 t_0 = Sys.time ()
258 nnetar _baixo _estim |> forecast (h = 1)
259 t_1 = Sys.time ()
260 tempos _ predict [" nnetar ", rep] = as. numeric (t_1 - t_0, units = "secs")
261

262 # GLARMA (arma_to_ glarma)
263 t_0 = Sys.time ()
264 gla_arma_baixo _estim |> forecast (h = 1)
265 t_1 = Sys.time ()
266 tempos _ predict ["gla_arma", rep] = as. numeric (t_1 - t_0, units = "secs"

)
267

268 # GLARMA (naive _ search _ glarma)
269 t_0 = Sys.time ()
270 gla_naive _ baixo _ estim |> forecast (h = 1)
271 t_1 = Sys.time ()
272 tempos _ predict ["gla_naive ", rep] = as. numeric (t_1 - t_0, units = "secs

")
273

274 # INGARCH (arma_to_ ingarch)
275 t_0 = Sys.time ()
276 ing_arma_baixo _estim |> forecast (h = 1)
277 t_1 = Sys.time ()
278 tempos _ predict ["ing_arma", rep] = as. numeric (t_1 - t_0, units = "secs"

)
279

280 # INGARCH (naive _ search)
281 t_0 = Sys.time ()

127

282 ing_naive _ baixo _ estim |> forecast (h = 1)
283 t_1 = Sys.time ()
284 tempos _ predict ["ing_naive ", rep] = as. numeric (t_1 - t_0, units = "secs

")
285

286 # INGARCH (post_ lasso)
287 t_0 = Sys.time ()
288 ing_lasso _ baixo _ estim |> forecast (h = 1)
289 t_1 = Sys.time ()
290 tempos _ predict ["ing_lasso ", rep] = as. numeric (t_1 - t_0, units = "secs

")
291 }
292

293

294

295

296 tempo _casos _mg_ forecast _tscv = microbenchmark (
297 dados _bench |>
298 fabletools :: model (arma = ARIMA(casos _conf)),
299 dados _bench |>
300 fabletools :: model (ing_naive = INGARCH (casos _conf , algorithm = " naive

_ search ", distr = " poisson ")),
301 dados _bench |>
302 fabletools :: model (ing_arma = INGARCH (casos _conf , algorithm = "arma_

to_ ingarch ", distr = " poisson ")),
303 dados _bench |>
304 fabletools :: model (ing_lasso = INGARCH (casos _conf , algorithm = "post

_lasso ", distr = " poisson ")),
305 dados _bench |>
306 fabletools :: model (gla_arma = GLARMA (casos _conf , algorithm = "arma_to

_ glarma ", distr = " poisson ")),
307 dados _bench |>
308 fabletools :: model (gla_naive = GLARMA (casos _conf , algorithm = "naive _

search _ glarma ", distr = " poisson ")),
309 times = 1)

	Folha de rosto
	FOLHA DE APROVAÇÃO
	Dedicatória
	AGRADECIMENTOS
	Epígrafe
	RESUMO
	ABSTRACT
	LISTA DE ILUSTRAÇÕES
	LISTA DE TABELAS
	LISTA DE ABREVIATURAS E SIGLAS
	SUMÁRIO
	INTRODUÇÃO
	SÉRIES TEMPORAIS
	JFSALVANDOTODOS E PREVISÕES EPIDEMIOLÓGICAS
	DADOS E MODELOS TEMPORAIS DE CONTAGEM
	SOFTWARE R E PACOTES ESTATÍSTICOS
	OBJETIVOS E ORGANIZAÇÃO

	DEFINIÇÕES DOS MODELO ORIENTADOS A OBSERVAÇÕES
	MODELOS LINEARES GENERALIZADOS
	GLARMA - AUTORREGRESSIVO DE MÉDIA MÓVEIS LINEAR GENERALIZADO
	DISTRIBUIÇÕES PARA A VARIÁVEL RESPOSTA
	ESCOLHA DOS TERMOS AR E MA
	CÁLCULO DE PREVISÕES

	INGARCH - HETEROCEDEDASTICIDADE CONDICIONAL AUTORREGRESSIVO GENERALIZADO
	DISTRIBUIÇÕES PARA A VARIÁVEL RESPOSTA
	ESCOLHA DOS TERMOS AR E MA
	CÁLCULO DE PREVISÕES

	PACOTE
	PACOTES DE SÉRIES TEMPORAIS NO R
	PIPELINE DE DADOS
	ESTRUTURA DO PACOTE
	IMPLEMENTAÇÃO INGARCH
	INGARCH()
	fitted()
	forecast()
	glance()
	residuals()
	tidy()

	IMPLEMENTAÇÃO GLARMA
	GLARMA()
	fitted()
	forecast()
	glance()
	residuals()
	tidy()

	DISPONIBILIZAÇÃO E IDENTIDADE VISUAL

	ALGORITMOS PARA AUTOMATIZAÇÃO DE MODELAGEM
	ALGORITMO PARA SELEÇÃO AUTOMÁTICA DE DISTRIBUIÇÃO
	ALGORITMOS PARA BUSCA AUTOMÁTICA DE ORDEM DE PARÂMETROS
	MÉTODO NAIVE-SEARCH
	MÉTODO ARMA-BASED
	MÉTODO VIA Post-LASSO
	COMENTÁRIOS SOBRE OS MÉTODOS

	ALGORITMO PARA BUSCA DE MELHOR PREVISÃO
	MÉTRICAS DE AVALIAÇÃO
	MÉTODOS DE AVALIAÇÃO DE DESEMPENHO PREDITIVO DE SÉRIES TEMPORAIS
	BUSCANDO E AVALIANDO O MELHOR MODELO
	BUSCA DE ORDEM DE PARÂMETROS
	NAIVE-SEARCH-FORECAST
	Tri-EVAL

	APLICAÇÃO E RESULTADOS
	DADOS UTILIZADOS
	HIPÓTESES
	RESULTADOS
	CASOS CONFIRMADOS
	ÓBITOS
	AVALIAÇÃO TEMPO DE EXECUÇÃO DE CADA MODELO

	ANÁLISE FINAL DAS HIPÓTESES

	POPULARIDADE E PLANOS FUTUROS
	CONCLUSÃO
	REFERÊNCIAS
	APÊNDICE A – Código utilizado para aplicação

