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RESUMO

Os modelos de séries temporais elaborados por Box e Jenkins em 1970 constituem a
principal classe de modelos temporais atuais, os denominados modelos ARMA (Autorregressivo
de Médias Mdveis). Embora esses modelos tenham se tornado populares em diversas
areas, sua aplicacao em séries de contagem, compostas por valores discretos que represen-
tam eventos especificos como niimero de clientes ou casos de doencas, apresentam desafios
singulares. Nesse contexto, os modelos que utilizam distribui¢oes de probabilidade de con-
tagem, sendo as principais Poisson e Binomial Negativa, mostram-se como importantes
ferramentas para esse tipo de dados. Assim, o trabalho teve como objetivo descrever a
implementagao dos modelos GLARMA (Autorregressivo de Médias Méveis Linear Gene-
ralizado) e INGARCH (Heterocededasticidade Condicional Autorregressivo Generalizado
de Valores Inteiros) no pacote do software R fableCount. Além das defini¢oes matematicas
e estatisticas de estimacao e previsao para cada modelo, os seus aspectos computacionais
também foram desenvolvidos, como os métodos numéricos de estimagao, construcao de
intervalos de previsao via bootstrap e métodos de validacao cruzada de séries temporais.
Outra importante funcionalidade do pacote explicitada no trabalho sao os algoritmos para
modelagem automatizada, divididos em: selecao automatica de distribuicao, sele¢ao au-
tomatica de ordens de parametros, e selecao automatica de melhor modelo para previsao.
Para a aplicagao, dados epidemioldgicos foram selecionados, onde um consideravel ganho
de desempenho e interpretacio foi visto ao se trabalhar com os modelos temporais de
contagem comparados aos modelos ARMA e NNETAR . Ao final, métricas de utilizagao

do pacote e planos futuros sao descritos,

Palavras-chave: Séries Temporais; Modelos Generalizados; Dados de Contagem; Progra-

macao em R.



ABSTRACT

The time series models developed by Box and Jenkins in 1970 constitute the main
class of current temporal models, the so-called ARMA (Autoregressive Moving Average)
models. Although these models are popular in many areas, their application to count-
ing series, composed of discrete values that represent specific events such as number of
customers or disease cases, presents unique challenges. In this context, models that use
counting probability distributions, the main ones being Poisson and Negative Binomial,
prove to be important tools for this type of data. Thus, the aim of the work was to describe
the implementation of the GLARMA (Generalized Linear Autoregressive Moving Average)
and INGARCH (Integer-valued Generalized Autoregressive Conditional Heteroscedastic-
ity) models in the R software package fableCount. In addition to the mathematical and
statistical definitions of estimation and forecasting for each model, computational aspects
were also developed, including numerical estimation methods, construction of prediction
intervals via bootstrap, and time series cross-validation procedures. Another important
feature of the package explained in the work are the automated modeling algorithms,
divided into: automatic distribution selection, automatic parameter order selection and
automatic model selection for forecasting. For the application, epidemiological data were
used, where a significant improvement in both forecasting performance and interpretabil-
ity was observed when using count time series models compared to ARMA and NNETAR

models. At the end, package usage metrics and future development plans are described

Keywords: Time Series; Generalized Models; Counting Data; R Programing.
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1 INTRODUCAO

1.1 SERIES TEMPORAIS

Dentro do campo da teoria das probabilidades, um processo estocastico descreve a
evolucao aleatéria de um sistema ao longo do tempo, sendo representado por uma familia
de varidveis aleatorias. Isso significa que, em um processo estocastico, a evolucao futura
do sistema nao é completamente previsivel, mesmo quando a condicao inicial é conhecida.
Existem multiplas dire¢oes possiveis para a evolucao do sistema, algumas vezes até mesmo
infinitas, devido a presenca da aleatoriedade. Em contraste, um processo deterministico é
aquele em que a evolucao futura do sistema é completamente determinada pela sua condi-
¢ao inicial. Nao hé incerteza envolvida; dado o estado inicial do sistema, é possivel prever
exatamente como ele evoluirda ao longo do tempo. Essa diferenga fundamental torna os
processos estocésticos ferramentas valiosas para modelar uma ampla gama de fenémenos

da vida real, onde a aleatoriedade desempenha um papel significativo, (Parzen 1961)

Dentre a classe de processos estocasticos, destacam-se as séries temporais, ampla-

mente utilizadas para modelar diversos problemas reais. Alguns exemplos incluem:

« Evolugdo do PIB: O Produto Interno Bruto (PIB) de um pais é calculado anual-
mente e apresenta variagoes que dependem de intimeros fatores econémicos e sociais.
Essas variagoes nao sao completamente previsiveis, caracterizando o PIB como um

processo estocastico.

« Movimentacao do preco de uma agao: O pre¢o de uma agao na bolsa de valores flutua
constantemente ao longo do dia. Essas flutuagoes dependem de uma combinacao de
fatores, como noticias econdmicas, desempenho da empresa, e comportamento dos

investidores, tornando a previsao dos precos futuros um processo estocéstico.

o Grau de isolamento social durante a pandemia: Durante a pandemia de COVID-19,
o grau de isolamento social variou més a més, influenciado por medidas governamen-
tais, conscientizacao da populacio, e taxa de infeccdo. Essas variacoes apresentam

um comportamento estocastico, dado que nao sao completamente previsiveis.

e Numero de mortos por COVID-19 a cada semana epidemiologica: O ntmero de
mortos por COVID-19 também variou semanalmente, sendo influenciado por diver-
sos fatores como a taxa de contagio, a eficacia das medidas de controle, e o estado
do sistema de satide. Essa variagdo semanal ¢ um exemplo de processo estocéstico,

j& que nao pode ser prevista com precisao total.
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4 exemplos distintos de Séries Temporais
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De maneira tedrica, uma série temporal é um conjunto de observagoes de uma
determinada variavel feitas em periodos sucessivos de tempo, ao longo de um determi-
nado intervalo. Essas séries podem ser tratadas como amostras aleatérias ordenadas no
tempo; a ordem em que sao feitas as medigdes é fundamental e nao pode ser esquecida.
A sequéncia temporal das observacoes é crucial porque cada valor depende, em maior ou
menor grau, dos valores anteriores. Existem diferencas importantes entre séries temporais
e dados transversais (cross-section). A andlise de séries temporais considera a dependén-
cia temporal entre as observacoes. Isso significa que os valores em diferentes instantes de
tempo estao correlacionados, e a ordem das observagoes é essencial para a andlise. Por
exemplo, o preco de uma acao hoje pode ser influenciado pelo preco de ontem e pela
expectativa para o preco de amanha. Em contraste, os dados transversais sao coletados
em um unico ponto no tempo, mas em diferentes locais ou sujeitos. Esses dados possuem
apenas dependéncia espacial e nao linear; um valor alto de um dado nao necessariamente
indica algo sobre o valor de outro dado. Por exemplo, um estudo que coleta a renda
de diferentes familias em um pais em um determinado ano trata de dados transversais.
Aqui, a ordem das observagoes nao é importante, e cada observacao é independente das
outras. Em resumo, a principal diferenca reside na dependéncia temporal presente nas
séries temporais, onde a ordem das observagoes é essencial, enquanto nos dados trans-
versais, cada observacao é independente das demais e a ordem das observacoes nao é
relevante.(Miranda 2014)

Dentro os exemplos de séries temporais citados, diferentes modelos seriam sugeri-
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dos para cada um deles, como Nowcasting para bolsa de valores e métodos sazonais para
isolameto e mortes. Apesar da variedade de modelos disponiveis para a analise e mode-
lagem desse tipo de dados, todos esses compartilham uma caracteristica fundamental: a

correlagao entre as observagoes ao longo do tempo.

Dentre os modelos e métodos de previsoes mais conhecidos, estao aqueles iniciados
por Box e Jenkins em 1970, conhecidos como modelos Autorregressivos Integrados de
Médias Moveis, ou apenas ARIMA. Assim como uma grande parcela de outros modelos
temporais, tal classe é escrita acompanhada por seus parametros, onde no caso de um
ARIMA, tem-se os parametros Autorregressivos, Diferenciacao (Integrado) e de Médias
Moveis, formando assim um ARIMA(p,d,q). Esses indicam a ordem das 3 diferentes

parcelas do modelo:

(i) Autorregressiva, que busca capturar a relagdo linear entre uma observagao e
um numero fixo de observacoes passadas, refletindo a influéncia das proprias observagoes

passadas na atual;

(ii) Integrado, representa o nimero de diferenciagoes necessarias para tornar a
série estacionaria;
(iii) Médias Méveis, que busca modelar o erro a cada defasagem, permitindo

capturar padroes nao capturados pela parcela autorregressiva.

Juntas, essas parcelas fornecem uma estrutura flexivel para modelar uma ampla
gama de séries temporais. Durante o trabalho, os valores que esses parametros podem
assumir serao chamados de ordem. Assim como serd detalhado nas se¢des busca auto-

matica de ordens de parametros

Apesar de tal modelo nao ser o foco do trabalho, ele se destaca por ser a base para

outras classes de modelos temporais, onde essas que abordadas serao posteriormente.

1.2 JFSALVANDOTODOS E PREVISOES EPIDEMIOLOGICAS

Conforme mencionado na se¢ao anterior, um dos principais nichos da modelagem
de séries temporais estd voltado para a previsao epidemioldgica. Questoes como a dis-
ponibilidade de leitos hospitalares, o aumento no niimero de bombas de oxigénio ou a
aquisicao de medicamentos exigem um planejamento logistico que depende nao apenas
da observacao das necessidades atuais, mas também de projecoes confiaveis para o fu-
turo. Nesse contexto, um dos grandes motivadores para o trabalho e o tema estudado
foram as dificuldades encontradas na modelagem preditiva de dados epidemiolégicos para

a plataforma de andlise epidemiologica JF SalvandoTodos.

A Plataforma JF SalvandoTodos, fundada em margo de 2020, surgiu com o objetivo
de disponibilizar dados sobre a evoluc¢ao da pandemia de COVID-19 e difundir informacao

de qualidade, consolidando-se como difusora cientifica, ja que no inicio da pandemia pouco
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se sabia sobre o novo coronavirus. (Prado 2022)

A plataforma permite a visualizacdo de dados sobre a evolucao da pandemia da
COVID-19 de forma gratuita, segura, simples e amigavel para todos os municipios do Bra-
sil, regides de saude, regioes do IBGE, Unidades da Federacao, para a Regidao Integrada
de Desenvolvimento do Distrito Federal e para o pais como um todo. Ela foi idealizada
assim que a pandemia da COVID-19 foi decretada pela Organizacao Mundial da Satde
e foi fundada em 29/03/2020 pelo professor Marcel de Toledo Vieira do Departamento
de Estatistica da UFJF e pelo Estatistico Pedro Pacheco, entao aluno do Curso de Es-
tatistica e atualmente formado pela UFJF que foi o responsavel pelo desenvolvimento e

programagcao.

A plataforma é uma aplicacdo web construida em RShiny, que disponibiliza os

dados epidemiologicos através de mapas e graficos interativos

Apés mais de 4 anos de seu inicio, além dos dados da COVID-19 a plataforma
conta hoje com dados sobre as SRAGs (Sindromes Respiratorias Agudas Graves), trazendo
numero de pessoas internadas por conta de COVID, Influenza e outras virus que atacam

o sistema respiratoério.

Buscando inovagoes ao trazer informagoes relevantes a gestores de satide, em Outu-
bro de 2023 a plataforma inaugurou sua se¢ao de previsao epidemiolégica para os dados de
SRAGs, possuindo previsao para unidade federal, grandes regioes, unidades federativas,

mesorregioes e microrregioes

A previsao na plataforma busca prever casos confirmados para um intervalo de 1
més, possuindo estimativas pontuais e intervalares para cada uma das semanas do més
estudado. Inicialmente, 2 modelos foram utilizados para as previsoes, sendo eles 0o ARIMA
(Autorregressivo Integrado de Médias Moveis) e o NNETAR (Autorregressivo de Redes
Neurais). Apesar dos modelos apresentarem bom desempenho para o Brasil, regides e suas
unidades federativas, esses apresentaram diversos problemas para previsdes para macro,

microrregides e municipios (em fase de teste)

Tais problemas compdem a seguinte lista

o Desempenho Computacional - Atualmente, o Brasil é dividido em 5 grandes
regides, 137 mesorregioes, 558 microrregioes e 5.568 municipios. Para contemplar
todas essas hierarquias geograficas, implementamos mensalmente modelos em cada
uma delas, totalizando 6.263 unidades geograficas. Como sao considerados dois mo-
delos por unidade (ARIMA e NNETAR), isso resulta na implementacao de mais
de 12.500 modelos por més na plataforma. Para a estimacao desse niimero elevado
de modelos, a avaliacao de fungoes de autocovariancia e autocovariancia parcial de
maneira manual para a escolha das ordens de cada parametro é inviavel, e para isso

algoritmos para sele¢ao automatica de parametros sao utilizados. Tais fatores impli-
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cam em um tempo de execucao do processo de modelagem extremamente elevado.
O modelo ARIMA apresenta um tempo de execugao computacional relativamente
eficiente, completando um ciclo de estimacao e previsao definido como a execucgao
dos modelos para as 6.263 unidades geograficas em aproximadamente 5 horas. Em
contrapartida, o modelo NNETAR demanda um tempo substancialmente maior,
podendo ultrapassar 12 horas por ciclo, a depender da complexidade e do ntimero
de parametros envolvidos na rede neural. Esse valor representa um aumento de
cerca de 140% no tempo de execucao em relacdo ao modelo ARIMA, o que pode
impactar significativamente a escalabilidade e a atualizacao frequente das previsoes

na plataforma.

Erros para Previsoes Intervalares

- Esse problema manifesta-se principalmente em modelos do tipo ARIMA . Tais mo-
delos pressupoem que os erros seguem uma distribuicao de probabilidade Gaussiana,
a qual, por defini¢do, atribui probabilidade a todo o conjunto dos niimeros reais, in-
clusive a valores negativos. Em contextos onde os nimeros de casos confirmados sao
baixos por exemplo, localidades cuja média semanal de casos permanece inferior a
10 , a construcao de intervalos de confianca baseada nessa premissa pode resultar
em limites inferiores negativos. Em situagoes praticas, isso leva a interpretacoes
absurdas, como afirmar que um municipio possui 95% de chance de registrar entre
-10 e 10 casos em uma determinada semana do préximo més, o que é incoerente,

dado que o niimero de casos nao pode ser negativo.

O livro Fpp3 - Forecasting: Principles and Practice (3rd ed) (Hyndman e Athanasopoulos 2021)
menciona que problemas em que as previsoes precisam ser restritas a um intervalo
especifico [a,b] podem ser atenuados mediante o uso de transformagoes de variaveis.

Uma das transformacoes sugeridas é a funcao loggit escalonada, definida por:

log(5—) (1.1)

em que « e [ sao parametros que delimitam o intervalo permitido, ambos assu-
mindo valores inteiros. Essa transformacio é de facil implementacdo e impoe um
custo computacional relativamente baixo. No entanto, apesar de suas vantagens

operacionais, ela acarreta uma série de efeitos colaterais importantes.

Primeiramente, a aplicagdo dessa transformacao induz assimetria nos intervalos de
confianca obtidos, dificultando a interpretacao direta dos resultados. Além disso,
compromete-se a interpretabilidade dos parametros autoregressivos e de médias mo-
veis do modelo, uma vez que as transformagoes alteram a estrutura original das
relacbes temporais. Mais criticamente, na modelagem de dados epidemiolégicos
como séries de casos confirmados de doengas , a utilizagao dessa técnica pode re-

sultar na perda das caracteristicas sazonais intrinsecas ao fenomeno estudado. A
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sazonalidade, que é fundamental para capturar padroes periddicos (por exemplo,
oscilagoes anuais em infecgbes respiratorias), pode ser distorcida ou suprimida pela
transformacao, prejudicando significativamente a qualidade e a utilidade pratica das

previsoes.

A analise dos itens destacados evidencia as principais vantagens e limitagoes asso-
ciadas a cada modelo considerado. O modelo ARIMA, embora apresente um tempo de
execucao reduzido tanto para a estimacao quanto para a geracao de previsoes, mostra-se
inadequado em contextos de baixas contagens, pois produz erros intervalares que incluem
valores negativos. Por outro lado, modelos baseados em redes neurais demonstram ex-
celente desempenho preditivo, com erros significativamente reduzidos mesmo em regioes
proximas de zero; contudo, seu custo computacional é substancialmente elevado, tanto no

processo de treinamento quanto na etapa de previsao.

Diante desse cenario, tornou-se evidente a necessidade da adog¢ao de modelos que
conciliem duas caracteristicas essenciais: rapida estimacio/previsiao e robusto de-
sempenho em séries com valores préximos a zero. Considerando essas exigéncias,
foram realizados diversos estudos com o objetivo de identificar alternativas mais adequa-
das para a plataforma em desenvolvimento. A partir dessa analise criteriosa, concluiu-se
que os denominados modelos séries temporais de contagem se mostravam particular-
mente promissores, beneficiando-se de uma sélida base teérica ja consolidada na literatura

estatistica.

O topico seguinte apresenta a introducao as classes de modelos de contagem sele-

cionadas, destacando suas principais propriedades e justificativas para a sua escolha.

1.3 DADOS E MODELOS TEMPORAIS DE CONTAGEM

Dados de contagem sao valores inteiros, ou seja sao limitados em (0, 1,2, ..., 00).
Seus exemplos estao presentes em diversas areas, desde o nimero de casos de certa do-
enca, chegadas de clientes de um estabelecimento e a quantidade de bactérias de uma
placa de petri. Problemas de contagem surgiram na area de regressao, onde pequisado-
res ao utilizarem os modelos de regressao linear simples, que assumiam que a variavel
dependente, mesmo sendo uma contagem, deveria seguir uma distribui¢ao normal, obser-
vavam diversas quebras de suposi¢oes em relacao aos residuos desse modelo. Essa aborda-
gem mostrou-se inadequada, ja que a distribuicao normal nao é apropriada para modelar
variaveis de contagem, que tendem a ter caracteristicas diferentes, como assimetria e
excesso de zeros. Nesse contexto, surgiu a necessidade de desenvolver modelos estatisti-
cos que se adequassem melhor a esses tipos de dados. Como sera descrito posteriormente,
(Nelder e Wedderburn 1972) deram inicio a teoria dos Modelos Lineares Generalizados, os

chamados MLGs, teoria essa que descreve a utilizagao de diferentes distribuig¢oes de pro-
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babilidade para a variavel resposta. Para dados de contagem, as distribui¢bes comumente
empregadas sao a Poisson e Binomial Negativa, essas 2 distribuicoes serao detalhadamente
estudadas ao longo do trabalho por conta de suas aplica¢gbes nos modelos temporais de

contagem

As técnicas classicas de séries temporais, tanto nos dominios de frequéncia quanto
de tempo, sdo tipicamente baseadas em segunda ordem. Ou seja, a modelagem nao vai
além dos primeiros (média) e segundos (covaridncia) momentos. Como resultado, modelos
Gaussianos, que sao completamente caracterizados por seus dois primeiros momentos, se
tornaram populares. Eventualmente, os pesquisadores buscaram mais, percebendo que os
modelos Gaussianos frequentemente descreviam mal séries de contagem e outros valores
discretos. A modelagem de séries temporais de contagem comecou seriamente no final
da década de 1970, quando extensoes dos MLGs para séries temporais comegaram a, ser

desenvolvidos

Apébs aproximadamente quatro décadas de pesquisa, os dados temporais de conta-
gem tém sido abordados através de diversos conjuntos de classes e categorias de modelos.
A vasta gama de modelos e suas respectivas classes podem ocasionar complexidade na
analise. Portanto, o presente fluxograma foi elaborado com o proposito de categorizar os

principais modelos de acordo com suas respectivas classes de estudo.

Classes de modelos de séries temporais
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Nesse trabalho, 2 modelos foram estudados detalhademente, o primeiro é o GLARMA,
abreviagado de Generalized Linear Autoregressive Moving Average ou em por-
tugués Modelo Autorregressivo de Médias Maéveis Linear Generalizado. Ja o
segundo é o INGARCH. abreviagao de Integer-valued Generalized Autoregressive
Conditional Heteroscedasticity ou em portugués Modelo de Heterocedasticidade

Condicional Autorregressivo Generalizado de Valores Inteiros.

Tal destaque se da pela sua implementacao no pacote desenvolvido, topico que sera
abordado posteriormente. Para evitar confusoes de siglas, deve-se citar a existéncia do
modelo IGARCH (Heterocedasticidade Condicional Autorregressivo Integrado), modelo
esse que possui um parametro de integracao indicando o nimero de diferenciagoes aplicada
aos dados. Apesar de sua semelhanca na nomenclatura e forma estatistica com o modelo
INGARCH, tal modelo nao foi abordado nesse trabalho

Os modelos GLARMA e INGARCH sao classificados como 'Orientados a Obser-
vagoes’ dentre o grupo de modelos Generalizados. Fokianos define esse grupo como tendo
uma das estruturas mais comuns e flexiveis para analise de séries temporais. Por exemplo,
modelos ARMA e ARIMA podem ser representados como um modelo de espaco de esta-
dos linear, para o qual algoritmos de filtragem de Kalman, suavizacao e previsao podem
ser implementados para calcular verossimilhancas Gaussianas, previsao de 1 passo, erros
quadraticos médios de previsao e valores suavizados dos estados. Para séries temporais
de contagens, o modelo de espago de estados linear nao ¢ diretamente aplicavel, pois a
variavel resposta assume valores discretos; uma forma mais geral do modelo de estado

generalizado padrao é necessaria. Por exemplo, um modelo de regressao Poisson assume

X¢|oy ~ Poisson(exp™),

Onde Poisson(\) representa uma funcao densidade de probabilidade Poisson de
média A\. Além da Poisson, outras distribui¢oes de contagem podem ser utilizadas nesses
modelos. Para isso, a distribuicdo deve pertencer a familia exponencial de 1 parametro,

tendo sua f.d.p fatorada em

P(X;=x | aq) =exp{e(z) + aqzy — Aay)}, x,=0,1,2,..., (1.2)

onde ¢(.) é uma fungao e A(a) é uma constante normalizadora que garante que a
f.d.p resulte na unidade: A(a) = log ( 2o exp{e(d) + aj})
Assim, outras distribui¢cbes comumente utilizadas sdo a Binomial Negativa e a

Poisson Generalizada

Como descrito em (Davis et al. 2021), simples generalizacoes dos modelos autorre-
gressivos sao os modelos lineares e log-lineares. O modelo Poisson Autorregressivo Linear

segue a forma
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p
X; | Fioq ~ Poisson (), A=d+> b;X;;
j=1
onde F;_1 = o(Xy, Xy _1,...), d e [b;jJi_; sdo nao negativos (essa caracteristica

garante que a média \; do processo seja nao negativa)

J& o modelo log-linear tem forma analoga, como

P
V¢ :d+ij10g(Xt_]+1)7
j=1
como descrito em (? ) e (? ) a fungao de ligagao é dada por v; = log(\), e
diferente do modelo linear d e [bj]g;l podem ser positivos ou negativos, porém devem

satisfazer as condic¢oes de estacionariedade

Apesar da facil generalizacao, Fokianos detalha que tais modelos possuem fungoes
de autocovaridncias semelhantes ao modelos AR(p) e ARCH(p), (Autorregressivo e Hete-
rocedasticidade Condicional Autorregressivo), onde essas se caracterizam como de "curta
meméria”. Buscando modelos que contornam esse paradigma, (Bollerslev 1986) foi o pri-
meiro a especificar o modelo GARCH (Heterocedastidicade Condicional Autorregressivo
Generalizado), onde apds sua primeira defini¢ao diversos autores ajudaram a desenvolver
sua teoria para dados de contagem, como (Rydberg 2000), (Streett 2000), (Heinen 2003),

(10), (13) , tendo inicialmente a seguinte estrutura

p q
Xt | ./T"t_l ~ Poisson ()\t) s )\t =d + Z ai)\t_i + Z ijt—j

i=1 j=1
Dado a natureza de valores do conjunto numérico dos inteiros que o modelo possui

ao se utilizar a distribuigdo Poisson, ele também é chamado de INGARCH (Heterocedas-

tidicade Condicional Autorregressivo Generalizado de Valores Inteiros).

Analogamente, o modelo log-linear tem a seguinte estrutura

p q
v =d+ Z @;Vt—; + Z bjlog (X¢—; +1),

i=1 j=1
com propriedades correspondente ao modelo linear. Nao hé restri¢oes de sinal para

os coeficientes e covaridveis podem ser facilmente incluidas, como exposto por (Fokianos 2011)
Demais t6picos, como diferentes fungdes de ligagao sdo propostas por (Tjostheim 2012),

assim como métodos de estimagao via quasi-verossimilhanga discutidas por (13) e

(Christou e Fokianos 2014). Tais topicos estao além do escopo desse trabalho, mas

se mostram extremamentes relevantes no contexto estudado

Ja para a familia de modelos GLARMA, (Davis e Liu 2012) declara essa como

uma das mais flexiveis e faceis de estimacao dentre os modelos do grupo ’Orientados
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a Observagao e Pardmetros. O modelo base é construido a partir de {e;}, onde o erro,
assumindo a famiilia exponencial de 1 parametro para as observagoes, gera uma sequéncia

martingale de média 0 e varidncia unitaria, definida por

. XT — B(Oét)
-~ /Bt(a)

€t

Como uma sequéncia martingale é nao-correlacionada, tem-se que e; é uma ruido
branco de média 0 e varidncia unitaria. A partir desse definigao, um modelo GLARMA (p,q)

¢ construido baseado em um modelo ARMA (p,q) via recursdo de {e;}.

De maneira especifica, dado {WW;} um modelo ARMA(p,q) inversivel, ele segue a

seguinte forma

p q
Wy = Z P + Z Ojei—j + e,
i=1 j=1
onde oy é chamado como o melhor preditor linear de W; dado um passado infinito
{Ws,s <t}

14 SOFTWARE R E PACOTES ESTATISTICOS

Durante o trabalho sera descrito como os modelos temporais explicitados no tépico
anterior foram implementados em um pacote de fungoes, onde que para isso o software R

foi escolhido.

"0 R é um ambiente de software livre para computagao estatistica e graficos.
Compila e roda em uma ampla variedade de plataformas UNIX, Windows e MacOS”
(R Project, 2021). Atualmente, porém, o R se tornou muito mais do que um simples
ambiente de software estatistico e se estabeleceu como uma das principais linguagens
de programagao de alto nivel com potencial para lidar com problemas de modelagem
estatistica, contando com uma série de ferramentas modernas que permitem inclusive o
desenvolvimento de aplicativos para a internet e manipulagao de grandes bases de dados.
O uso do R tem se dado principalmente por estatisticos, mateméaticos, programadores
e cientistas contemporaneos no geral. As proéprias universidades do Brasil e do mundo
tém se esforcado para ensinar e incentivar seus alunos a trabalharem com a ferramenta
e o motivo desta operagao tem sido a necessidade computacional no desenvolvimento de
estudos cientificos. O resultado deste necessério esforco é que cada vez mais novos pacotes
capazes de lidarem com problemas cada vez mais complexos estao sendo desenvolvidos
em um intervalo de tempo cada vez menor, possibilitando que os demais usuarios da
comunidade usufruam deste material e apliquem em suas respectivas areas de interesse
(Pacheco 2021)
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A criagado de um pacote passa por diversas etapas, indo da sua motivacao inicial,
diferentes maneiras de estruturacao de cédigo até a forma de disponibilizagao do produto
final para o publico. Assim, para seu desenvolvimento, o pacote construido neste trabalho
se baseou fortemente na filosofia exposta por (Wickham e Bryan 2023) no livro R Packa-
ges (2e) "Este livro defende nossa filosofia de desenvolvimento de pacotes: tudo que pode
ser automatizado, deve ser automatizado. Faca o minimo possivel manualmente. Faca o

maximo possivel com fungoes.”

A escrita de uma fung@o nao é apenas um processo de generalizacao, é também um
processo de automatizacao, e portanto toda sua estrutura deve ser analisada com cuidado.
Seja o nimero de argumentos que ela deve ter, a ordem no qual esses argumentos estao
dispostos, como também seu objeto de retorno, todos os passos desse algoritmo deve ser
minuciosamente dissecado buscando facilitar sua utilizacdo por parte do usudrio. Para
isso a forma de escrita e organizagoes de fungoes teve como fundamento o conceito de

programagao funcional descrito por (Wickham 2014) e por (Pacheco 2021)

Assim este trabalho buscou ir além das defini¢oes matematicas dos modelos imple-
mentados, ao também apresentar o pensamento computacional empregado na construgao

do pacote.

1.5 OBJETIVOS E ORGANIZACAO

O presente trabalho esta estruturado de forma a conduzir o leitor desde a funda-
mentacao matematica dos modelos de séries temporais de contagem até a aplicacao pratica
em dados reais, passando por aspectos de implementagao computacional, automatizacao

de processos e perspectivas futuras do pacote desenvolvido.

No Capitulo 2, sao apresentadas as bases matematicas e estatisticas dos modelos
GLARMA e INGARCH . Este capitulo estabelece os fundamentos tedricos necessarios
para compreender a estrutura e as propriedades desses modelos, fornecendo a sustentacao

formal para as etapas posteriores.

O Capitulo 3 discute o papel dos pacotes estatisticos no ambiente R, com destaque
para aqueles voltados a modelagem de séries temporais. Nesse contexto, é introduzido
o pacote fableCount, desenvolvido no ambito deste trabalho, detalhando sua estrutura
interna, a implementacdo computacional dos modelos GLARMA e INGARCH, bem como
sua identidade visual. Esse capitulo conecta a teoria do Capitulo 2 ao processo de tradugao
pratica em codigo.

No Capitulo 4, sao abordados os métodos de modelagem automatizada, divididos
em trés eixos: a selecao automatica de distribuicoes, a selecao automatica de ordens de
parametros e a busca pelo melhor modelo com foco em previsdo. Sao discutidas, também,

as métricas de avaliacdo de desempenho, e os métodos de avaliacdo para modelos com
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foco em previsao, como o Time Series Cross Validation e o Out-of-Sample, que orientam

a selecao do modelo preditivo mais adequado.

O Capitulo 5 traz a aplicacao empirica do pacote desenvolvido em dados epidemio-
l6gicos da COVID-19. Nessa etapa, demonstra-se o desempenho dos modelos de contagem
frente a alternativas classicas como ARIMA e NNETAR, evidenciando ganhos relevantes
em termos de acurdcia e desempenho computacional, se alinhando com as hipoteses de-

senvolvidas durante o capitulo

Ja o Capitulo 6 apresenta métricas de utilizagdo do pacote, nimero de usudrios
ativos e demais indicadores de impacto, além de discutir os planos futuros para sua
expansao e aprimoramento. Essa se¢ao conecta os resultados obtidos a relevancia pratica

e a sustentabilidade do projeto.

Por fim, o Capitulo 7 sintetiza as principais contribui¢oes do trabalho, destacando
avancos, limitagoes e potenciais desdobramentos para pesquisas futuras no campo das

séries temporais de contagem.
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2  DEFINICOES DOS MODELO ORIENTADOS A OBSERVACOES

Conforme detalhado na se¢ao 1.3, o pacote desenvolvido concentrou-se exclusiva-
mente na implementacao dos modelos classificados como ”Orientados a Observagoes”. A
implementagao desses modelos é subdividida em duas partes distintas: a definicdo ma-
tematica e a implementagao computacional. Dessa forma, nesta secao, foram delineados
os conceitos fundamentais relacionados as definicbes matematicas e estatisticas de cada
modelo. Posteriormente, na se¢ao 3, intitulada ”"Pacote”, foram abordadas as questoes
relacionadas a implementacao computacional, fornecendo detalhes sobre como os modelos

foram traduzidos em codigo e integrados ao pacote.

Uma importante consideragao deve ser fixada sobre como os nomes dos modelo
foram utilizados. Ao nos referirmos aos modelos de séries temporais, estamos abordando
uma classe abrangente de modelos. Tomando como exemplo a classe ARMA, é possivel
identificar suas diversas variacdes como: modelos sazonais, modelos com parametros de di-
ferenciacao e aqueles que incluem covariaveis, denominados SARMA, ARIMA e ARMAX,
respectivamente. Adicionalmente, é possivel combinar diferentes modelos dentro de cada
classe, como é o caso do SARIMAX, um modelo Sazonal Autorregressivo Integrado de
Médias Moveis com Variaveis Exogenas, que é uma fusdo dos trés tipos mencionados
anteriormente. Com o intuito de simplificar a comunicacao e facilitar a compreensao do
trabalho, os modelos GLARMA e INGARCH serao sempre referidos por seus nomes
originais, enquanto suas variacoes serao acompanhadas de sufixos, indicando
a presenga de parcelas sazonais ou covariaveis. Essa abordagem visa aprimorar a

clareza e a consisténcia na exposigao dos conceitos e resultados apresentados neste estudo.

2.1 MODELOS LINEARES GENERALIZADOS

A classe dos modelos orientados a observagoes sao originados daqueles como classi-
ficados como Modelos Lineares Generalizados, onde os modelos de cadeia oculta de Mar-
kov formam ou outro subgrupo. Os Modelos Lineares Generalizados (MLG) propostos
por (Nelder e Wedderburn 1972) sdo uma extensao dos modelos lineares classicos, onde
o trabalho proposto pelos autores buscou especificar outras distribuigoes para a variavel

resposta

Os modelos lineares usuais assumem que sua variavel resposta assume distribuicao
Normal, com parametros de locacao e escala constantes, tal suposicao se mostra robusta
em diversos contextos, onde assumir tal distribuicao facilita interpretagoes do modelo,
testes de significancia e certas propriedades exclusivas de uma distribuicdo Gaussiana.
Porém, em contextos como dados de contagem, binarios, e limitados na reta real, utili-
zar tal modelo se mostra inviavel e erroneo. Assim, os MLGs surgem como ferramenta

para esses casos. Nesse contexto, a teoria desenvolvida por (Nelder e Wedderburn 1972)
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especificou demais distribui¢oes de probabilidade para a variavel resposta.

Dado uma amostra com n observacoes independentes, X uma matriz com p + 1
colunas e y um vetor de observacoes amostrado de Y, sdo definidos os 3 componentes de
um MLG

e Y tem distribuic¢do probabilistica como membro da Familia Exponencial de distri-
buigoes, com uma func¢ao de probabilidade ou fun¢ao densidade de probabilidade,
para varidveis aleatérias discretas e continuas respectivamente

P(X;=a | oq) =exp{e(z) + vz — A(ow)}, x=0,1,2,..., (2.1)
onde ¢(.) é uma funcdo e A(«) é uma constante normalizadora que garante que a
f.d.p resulte na unidade: A(a) = log (Z;’io exp{¢(j) + aj})

(yi) = psi = b (2.2)

Var(y;) = o? (2.3)

o A matriz X de covariaveis relacionadas no chamado preditor linear na forma

ni =X B (2.4)

o Uma Fungao de Ligagdo mondtona (inversivel) e diferencidvel g(.) , que liga o pre-

ditor linear n; a média de Y onde escrevemos

9(pi) = n; (2.5)

Para variaveis de contagem, as distribui¢oes Poisson e Binomial Negativa sao comulmente
utilizadas. A distribuicao de Poisson é definida para uma variavel aleatoria discreta Y que
representa o numero de eventos ocorrendo em um intervalo fixo. A fun¢ao de probabilidade

¢é dada por

e —A
Frighh) = 27 (2.6

onde A\ é o parametro da taxa que representa o nimero médio de eventos no
intervalo, y é o nimero de eventos. A distribuicdo Poisson possui os primeiro e segundo

momentos iguais, ou seja

EY)=Var(Y)= A\ (2.7)
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Em sua forma na familia exponencial, a distribuicao pode ser fatorada em

Ty (WIA) = exp (y log(A) — A+ (—log y!)) (2.8)

Sua funcgao de verossilhanca e log-verossimulhanca sao dadas por

L\ g) = iexp(—)\)yi!w (2.9)
(A, g) =—n\— zi: In(y;!) + in(X\) zi: Y; (2.10)

Ja a Binomial Negativa é uma distribuicao de probabilidade discreta que pode ser
usada para modelar o nimero de falhas até que um ntmero fixo de sucessos seja alcan-
¢ado em uma sequéncia de experimentos de Bernoulli independentes. Esta distribuicao
¢é frequentemente utilizada em situacdes onde os dados apresentam sobredispersao, ou
seja, quando a variancia é maior do que a média, algo que nao pode ser adequadamente

modelado pela distribuicao de Poisson. Sua func¢ao de probabilidade é dada por

r+y—1
Y

Fe (o) = ( )pm )y (211)

onde y representa o numero de falhas até que ocorra o r-ésimo sucesso, r representa
o nimero de sucessos desejados e p é a probabilidade de sucesso de cada experimento

Bernoulli

Diferentemente da distribuicdo Poisson, a Binomial Negativa possui esperanca e

variancia distintas

1 —
By 1P (2.12)
p
1 —
Var(y) = "2 (2.13)
p
Em sua forma na familia exponencial, a distribuicao pode ser fatorada em
r4+y—1
sotolr) = (") explutat) + rina - ) 2.14)
Sua funcao de verossimilhanca e log-verossimilhanga sao dadas por
(r+y— 1),
el =3 (0 ot - 2.15)
=1 i
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I(r,ply) =>_In <r Y ) +7rln(p) + v In(1 — p) (2.16)
j=1

i
Normalmente, a funcao identidade e a funcao log sao utilizadas como funcao de

ligacao para ambas as distribuigoes descritas

Utilizando funcao identidade, a média ¢é diretamente modelada pelo preditor linear,

dado por

d
p=n=7 rf=ap (2.17)

=1

J& 0 modelo com funcao de ligacao log tem-se a seguinte estrutura

log(p —n—z%ﬁd—xﬁ (2.18)

Com os MLGs devidamente introduzidos, podemos entao nos aprofundar nos 2
modelos que sao o foco do trabalho: GLARMA e INGARCH

2.2 GLARMA - AUTORREGRESSIVO DE MEDIA MOVEIS LINEAR GENERALI-
ZADO

Dado uma série temporal dada como Y, : ¢t € N e um vetor k-dimensional de de
covaridveis dado como X : t € N. Denota-se F; = {Ys : s < t,z5: s <t} como a informa-
¢do em tempo anterior para a variavel resposta e a informacao em um tempo anterior e
presente para as covariaveis. Em geral a distribuicdo condicional de Y; dado F; é dado

através da sua fatoracao na forma da familia exponencial

f (yt | Wt) = exp {tht —ab (Wt) + Ct} , (2.19)

onde a; e ¢; sao sequéncias de constantes possivelmente dependendo das observa-

coes y;. A informacao de F; é resumida na variavel W,

Como descrito por (Benjamin e Stasinopoulos 1998), modelos orientados a obser-
vacoes podem assumir diversas formas. O trabalho teve como foco a utilizagdo para o

modelo GLARMA onde a utiliza¢ao do vetor de estados em (2.1) é forma geral

W, =218+ O+ Z,. (2.20)

Além dos pardmetros da regressao (3, o termo O, pode ser incluido como offset
do modelo. O offset é um termo utilizado para ajustar o modelo em diferencas conhe-
cidas entre observagoes, permitindo a modelagem de taxas relativas sem estimar novos

parametros.
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Para a dependéncia temporal descrito no processo de estado de (2.20) de W,
o termo Z; é introduzido no processo de estado como uma recursao de médias moveis

autorregressivas, de forma

p q
Zy =) 0iZi—i +ei) + ) _bier, (2.21)
i=1 i=1
no qual, seus residuos preditivos sao definidos como

Y, —
e = -+ Ht (2.22)

Vg

tendo v, como um termo chamado de func¢ao normalizadora ou fungao de escala.
Esse termo se refere a uma transformacao que ajusta ou redimensiona os residuos predi-

tivos com base em uma medida de dispersao, como o desvio padrao.

E importante destacar que esses tipos de residuos sao uma sequéncia martingale,
e portanto possuem média 0 e sdo independentes. Quando v; é ajustado ao desvio padrao
condicional de Y; e e; também possui varidncia unitaria, temos que esses sao um ruido

branco fracamente estacionarios (Dunsmuir e Scott 2015)

Além da forma descrita em (2.21), Z; pode ser escrito via combinagoes lineares

dos residuos preditivos e; descritos em (2.22), isto é,

Zt = nyjet,j, (223)
j=1

Para a parametrizagao da parcela de peso de média moveis infinitas 7, na equacao,
configurar que sejam representados como os coeficientes em um filtro autorregressivo de

médias moveis. Dado por

> 55 = 60)/6(0) 1 2.24)

onde ¢p(¢) =1 — 1 — ... —ppCP e 0(¢) =1+ 6, + ... +0,(7 sdo os respectivos

polinomios autorregressivos e de médias moéveis do filtro ARMA.

Como descrito em (6), ao se definir {Z;} dessa maneira, pode se enxergar ele como
o melhor predito linear de um processo ARMA estacionario e invertivel, com ruido dado
pela sequéncia de {e;} de desvios padronizados das respostas de contagem a partir de sua
média condicional, dado os valores passados para a varidvel resposta e valores passados e

atuais das covariaveis.

Continuando as defini¢des do modelo a respeito de seus residuos preditivos, dado
por e; = Yty;t‘“ Seja v(W;) uma func¢do de escala, é possivel construir diversos tipos de

residuos a partir dessa definicao
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Funcao de Escala de Pearson

Seja v, = vpy, onde

Vpt = [atb(WT)]0'5

Tal fungao de escala resulta no residuo do tipo Pearson
Funcao de Escala Score ype

Se baseia no trabalho de (5), onde se realiza a substituigdo do desvio padrao

condicional pela variancia condicional, dado por

1/5775 = atb(WT)

Funcao de Escala Identidade

Se baseia no trabalho de (Wang e Li 2011), que remete as caracteristicas de um

modelo BARMA (ARMA Binério), onde nao se considera uma fungao de escala, dado por

vre =1

Cada tipo de funcao de escala e consequentemente de residuos, possuem resulta-
dos distintos nos modelos GLARMA Poisson e GLARMA Binomial Negativa, antes de

citarmos tais diferencas, tais distribui¢oes para respostas devem ser explicitadas

2.2.1 DISTRIBUICOES PARA A VARIAVEL RESPOSTA

O pacote desenvolvido oferece ao usuario 2 tipos de funcao distribuicao de probabi-
lidade para o usuario utilizar para a variavel resposta, sendo elas distribuicdo de Poisson

e distribuicao Binomial Negativa
Para a distribuicao de Poisson, tem-se que oy = 1, b(W,) = exp(Wy), ¢; = —log(y;)
e a funcao de ligacao utilizada é a canoénica dado por g(u) = In(u)

Para a distribui¢do Binomial Negativa, tem-se que p; = exp(W;), onde a seguinte

parametrizacao ¢ utilizada no pacote

T (a4 y) a 17T w 1"
W, a) = : 2.25
F o] Wer ) D@ (ye +1) [+ pe] [+ (2.25)

E importante destacar que u; = exp(W,) e que 02 = p + p?/a. Para a ~ oo a
distribuicao Binomial Negativa converge para uma Poisson. Note que, se a é conhecido,

tal densidade pode ser fatorada em uma pertencente a familia exponencial uni-paramétrica

Tais opgoes sao disponibilizadas a depender do grau de dispersao dos dados tra-

balhados. A distribuicao Poisson é mais simples de se trabalhar por conta de apresentar
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apenas 1 parametro, dado por \; = exp(W;), onde portanto a estimagdo de apenas 1
pardmetro é necessaria. Apesar de tal comodidade, tal distribuicao assume igualdade de
média e varidncia, no qual tem-se que \; = pu; = 07. Assim para dados que apresentam
o fendmeno de sobredispersao, tal distribuicdo apresenta perda de desempenho. Nesse
contexto a utilizagdo da distribuicao Binomial Negativa se mostra mais interessante, ao

possuir fungoes distintas para sua esperanca e variancia.

A escolha da melhor distribui¢ao sera novamente abordade no tépico 4 - "Algorit-

mos para Modelagem Automatizada’

2.2.2 ESCOLHA DOS TERMOS AR E MA

A escolha das defasagens adequadas para os componentes AR e MA no modelo
GLARMA costuma ser consideravelmente mais dificil do que em séries Gaussianas. Nesses
casos, os residuos obtidos a partir de ajustes por minimos quadrados podem fornecer
informagoes bastante tteis sobre a estrutura de dependéncia serial, especialmente por

meio das fungoes de autocorrelacao e autocorrelagao parcial.

No entanto, ao contrario dos residuos da regressao por minimos quadrados que
frequentemente ajudam a identificar a estrutura do modelo de dependéncia serial em
respostas continuas , no caso de respostas com valores discretos, os residuos do ajuste de
um modelo GLM geralmente nao fornecem boas orientacoes para a escolha dos parametros
p e q necessarios para especificar o modelo GLARMA. Isso é ainda mais evidente quando

a dependéncia serial é fraca ou moderada.

Assim como a escolha da melhor distribuicao para o modelo, a escolha do niimero
de defasagens adequadas, tanto para o termo AR quanto para o MA, serdo discutidos

novamente no topico 4 "Algoritmos para Modelagem Automatizada’

2.2.3 CALCULO DE PREVISOES

Em comparacao com modelos ARMA e ARMAX, os métodos para previsao de
valores futuros calculados a partir de um GLARMA possuem um complexidade adicional

dado a estrutura condicional do modelo.

Para previsoes um passo a frente (one-step ahead forecast) devemos considerar a
especificacao condicional de Y;. No entanto, para previsoes de multiplos passos a frente,
essa formulagdo condicional implica que todos os possiveis caminhos futuros da amostra
ao longo do horizonte de previsao precisam ser considerados, seja teoricamente ou por

meio de simulacao.

Para previsdes um passo a frente, denotadas por Y;,1, onde n é o indice maximo

para as amostras de treinamento do modelo, temos a seguinte estrutura
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. p “ a
Ziir =305 (Zsaj + eeag) + D Ojéeay. (2.26)
j=1

Jj=1
Note que Z;,; pode ser estimado usando apenas os valores de Z; e de é;

J& para o caso de previsoes multiplos passos a frente, temos a seguinte estrutura

f(yn+L ’ Fn) = Z T Z H f(Yn+j | ]:nJrj)) (2'27)

Yn+1 Yn+L—-1 j=1
Onde definimos F,, como uma funcao que possui o conjunto de informagoes uti-
lizadas no modelo como: valores regressores i, ..., T14; bem como os valores passados
da propria série temporal Y41, ..., Yeyj—1. Os termos que estao dentro do somatério irao

crescer de maneira exponencial dado o nimero de previsoes a frente L

Apesar de apresentar uma complexidade alta para estimac@o e previsao em um
ambiente computacional, o framework glarma utilizado no ambiente R, encapsula todas
as funcoes necessarias para estimagcao, previsoes e os métodos computacionais de otimiza-
¢ao para ambos os objetivos. Facilitando assim, a implementacao desse modelo no novo

framework criado fablecount

2.3 INGARCH - HETEROCEDEDASTICIDADE CONDICIONAL AUTORREGRES-
SIVO GENERALIZADO

Dada uma série temporal dada como Y, : t € N e um vetor r-dimensional de cova-
riaveis dado como X, : t € N, estamos interessados em modelar a média condicional do

processo dado por E(Y;|F;—1) = A;. Os modelos tem forma geral dado por

g (/\t> - 60 + Z Bkg (Yt—lk) + Z Qg ()‘t—je) + nTXt7 (2'28)
k=1 /=1

onde ¢ : R — RT é uma funcdo de ligacdo e § : Ny — R é uma funcio de
transformacdo. n = (71,72, ...,m-)" é o vetor de efeitos das covaridveis X;. Na teoria dos

MLGs e sua termologia, chamamos v; = g(\;) de preditor linear.

Para a escrita de um modelo INGARCH(p, ¢), defini-se os parametros autorre-
gressivos p e de médias moveis q. A ordem p refere-se ao numero de defasagens das
observacgoes utilizadas como autorregresivas Y;_1,Y; 2, Y;_,, ja a ordem ¢ refere-se ao nu-
mero de defasagens das médias condicionais A\;_1, \—2, A\i—q. Além disso, um INGARCH
com sazonalidade estocéstica é escrito como INGARCH(p, q)(P, Q)m), onde P representa
a ordem autorregressiva sazonal, () a ordem de médias méveis sazonais e m o indice de

sazonalidade

Um exemplo pode ser escrito de um modelo INGARCH(p, ¢) com fungao de ligagao

e tranformagao identidade, g(z) = g(x) = z, e efeito das covaridveis igual a 0, 7 =0
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p q
M=00+ Y BYiok + Y ahis (2.29)
k=1 =1

Por si 50, sem especificacao de distribuicao para Y;, o modelo acima é descrito como
um GARCH(p, ¢), na qual a partir da especifica¢ao de uma distribuigao de contagem como
Poisson ou Binomial Negativa, tal modelo passa a se chamar GARCH de Valores Inteiros,
ou apenas INGARCH. Em casos de especificagdo da distribuicao Poisson, tal modelo é

chamado por alguns autores de Autorregressive Conditional Poisson(ACP)
Além da funcao identidade, a funcao de ligacao log é extremamente utilizada para

ajustes de modelos log-lineares. Assim, dado uma fungao de ligagdo g(z) = log(z), uma

funcao de transformagao g(x) = log(x + 1), temos o seguinte modelo INGARCH(p, q)

g ()\t) = Bo + Z Bk 10g (}/t—k + 1) + Z QplVs_y. (230)
k=1 (=1

Além das escolhas para as funcgoes de ligacao e transformacgdo, é necessario a
utilizagao de alguma distribuicao de probabilidade de contagem, onde no préximo tépico

os modelos com distribui¢ao Poisson();) e Binomial Negativa(\;, §) foram estudados

2.3.1 DISTRIBUICOES PARA A VARIAVEL RESPOSTA

Assim como o modelo GLARMA, o modelo INGARCH utiliza como base para sua

estimacao as distribui¢oes de probabilidade Poisson ou Binomial Negativa

A distribuicao de Poisson é comumente usada para modelar a taxa de eventos
aleatérios que ocorrem em algum intervalo de tempo fixo. Se assumirmos que A denota
a taxa de chegadas, entao a distribuicao da variavel aleatoria Y |, que denota o ntimero
de chegadas em um intervalo de tempo fixo, segue a distribuicao de Poisson com funcao
densidade de probabilidade (Fokianos 2012)

Para modelos paramétricos de contagem como o caso do INGARCH, é necessario
a utilizagdo de alguma distribuicdo de contagem. Assim, nesse contexto, a distribuicao

mais simples.

O modelo faz a seguinte suposicao:

A exp (=)

P(K:y|‘/—-;f—1): y'

, y=0,1,... (2.31)
Além disso, dado uma variavel aleatéria X ~ Poisson()\), tem-se que
E(X)=Var(X) =X\
Esse resultado segue para os casos temporais, onde portanto:

E(Yi|Fi1) = Var(GFio1) = A
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Para a estimagao do modelo com funcao de ligacdo e funcao de transformacao

identidade, o espaco paramétrico com covariaveis é dado por

P q
O = {BERPJ”J”“:BO >O,Bl,...,ﬁp,al,...,aq,m,...,m>O,Zﬁk+20@< 1}
k=1 =1
(2.32)

Ja para modelos log-lineares, o espago paramétrico com covariaveis é dado por

@:{aeRW“H:|51|,...,\5py,ya1|,...,yaq|<1,

P q
D Ot )
k=1 =1

< 1} (2.33)

A utilizacdo dessa distribuicdo torna a estimacdo do modelo menos complexo,
dado que apenas 1 parametro ();) deve ser estimado. Porém em casos no qual a variancia
é significativamente maior que a média, fendomeno esse chamado de sobredispersao, a

utilizagao da distribuicao Binomial Negativa pode trazer ganhos ao modelo

A distribuicao Binomial Negativa permite que a variancia condicional do modelo
seja maior que média \;. Como definido por (Christou e Fokianos 2014), o modelo assume
que Y; | Fi—1 ~ NegBin(\;, ¢), onde a distribuicao possui 2 pardmetros: o primeiro \; é

média e o segundo ¢ modela a dispersao. Isso é

(o +y) ¢ ¢ A Y
P<Yt:y|]:t_1)2f(y+1)F(¢) <¢+)\t> <¢+)\t> , y=0,1,... (2.34)

Para esse caso, Var(Y; | Fi_1), ou seja, a varidncia condicional aumenta quadra-
ticamente em relagdo a A;. Vale destacar que a distribuicdo Poisson é um caso onde
¢ — 0

2.3.2 ESCOLHA DOS TERMOS AR E MA
Como ja descrito para o modelo GLARMA, encontrar o valor 6timo para as ordens
autorregressivas e de médias maéveis nao é uma tarefa trivial.

Buscando contornar as dificuldades ligados a esse tema o tépico 4 ”Algoritmos
para Modelagem Automatizada” apresenta métodos que facilitam a escolha dos valores

das ordens autorregressivas e de médias moveis

2.3.3 CALCULO DE PREVISOES

Em relagdo ao erro quadratico médio, para previsoes 1 passo a frente, o melhor

estimador Y,,,; dado F, é dado pela média condicional de \,,;, como descrito em
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gN) =Bo+ > Brlog Yok + 1)+ cursy. (2.35)
k=1 =1

Ja para previsdoes multiplos passos a frentes, previsoes essas chamadas de "pre-
visoes h passos a frente”, onde h representa qual é o horizonte de previsao, o melhor
estimador Yn+h é obtido através da chamada de previsdes 1 passo a frente recursivamente,
onde os valores desconhecidos Y, 11, ..., Y, 1 sao obtidos por suas respectivas previsoes
1 passo a frente. Vale destacar que a distribuicdo de previsdes h passos a frente nao
¢é conhecida de forma analitica, mas pode pode ser aproximada por métodos numéricos.
Nesse trabalho utilizamos um bootstrap paramétrico para isso, permitindo a construgao

de intervalos de confianca para as estimativas calculadas

O pacote construido encapsula o pacote tscount para estimacao dos modelos e
calculo de previsoes. Dessa forma, reciclamos métodos numéricos de dificil construgao que
ja foram desenvolvidos e focamos em na melhor forma de disponibilizar esses métodos para

0S usuérios.
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3 PACOTE

3.1 PACOTES DE SERIES TEMPORAIS NO R

Durante as décadas de 1960 e 1970, os principais modelos estatisticos de séries
temporais foram desenvolvidos. Diferentemente dos métodos anteriores aos anos 1960,
como o método de Delphi, os modelos de Suavizagao Exponencial e Autorregressivo de
Médias Moveis exigem um processo intensivo de avaliagao das fungoes de autocovariancia,
selecao da ordem dos parametros e estimacao desses parametros por meio de métodos

como maxima verossimilhanca, minimos quadrados, entre outros.

Consequentemente, esses métodos apresentam dificuldades de aplicagao sem o au-
xilio de um computador. Os primeiros softwares a oferecerem funcionalidades para analise
de séries temporais foram o Autoreg, que langou suas fungoes em 1960, o SPSS, que as
introduziu a partir de 1968, e o SAS, em 1970.

Embora pioneiros em seus respectivos campos, esses softwares nao conseguiram
ganhar grande popularidade além do ambiente comercial, principalmente devido a sua
disponibilidade exclusiva por meio de assinatura ou compra de licencas. Essa abordagem
acabou afastando estudantes autonomos, académicos e aqueles sem acesso a recursos
financeiros para investir nessas ferramentas. No entanto, com o avanco da tecnologia e o
surgimento da comunidade de codigo aberto, novas solugoes surgiram, oferecendo acesso
gratuito a ferramentas poderosas de analise de séries temporais. Linguagens como R,
por exemplo, rapidamente se tornaram populares devido a sua gratuidade, vasta gama de
pacotes e suporte ativo da comunidade. O R oferece uma ampla variedade de fungoes para
modelagem, andlise e visualizacao de séries temporais, além de permitir maior flexibilidade
e customizacao de andlises conforme as necessidades do usuario. Sua comunidade ativa e
colaborativa também proporciona suporte e recursos adicionais, tornando-o uma escolha

atraente para estudantes, académicos e profissionais em todo o mundo.

Com sua primeira versao lancada em 1993, o R se tornou uma das linguagens
de programagcao mais populares para andlise de dados, impulsionado em grande parte
por sua natureza open-source. Essa caracteristica permite que qualquer pessoa contribua
para o desenvolvimento da linguagem e crie novos pacotes para atender a necessidades
especificas. A comunidade de usudrios do R é extremamente ativa, o que resulta em
uma vasta gama de pacotes disponiveis no Comprehensive R Archive Network (CRAN),
repositorio oficial de pacotes da linguagem. Abrangendo desde a manipulagdao de dados
e visualizacao até modelagem estatistica avancada, aprendizado de maquina e ciéncia
de dados, sua versatilidade, combinada com a sua natureza open-source, a torna uma
ferramenta indispensavel para pesquisadores, cientistas de dados e analistas de negdcios

em todo o mundo.

O R oferece uma vasta gama de pacotes especializados em anélise de séries tempo-
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rais, cada um com suas préprias caracteristicas e funcionalidades. Entre os mais populares,
destacam-se o forecast, conhecido por sua ampla variedade de modelos, o zoo, que além
de séries temporais, oferece ferramentas para manipulacao de objetos indexados no tempo,

e o TSA, voltado para analises estatisticas mais tradicionais.

O forecast se caracteriza como o pacote mais famoso para o nicho de séries tem-
porais, possuindo maior nimero de downloads dentre os pacotes dessa area, ultrapassando
a marca de mais de 20 milhoes. Desenvolvido por Rob Hyndman, George Athanasopoulos
e outros, o pacote tras modelos como ARIMA, ETS, ARIFMA, BATS, TBATS e outros.
Apesar de sua popularidade, o pacote lancado em 2008 ndo era capaz de suportar mé-
todos para modelos hierdrquicos, de regressao dinamica e métodos de reconciliacdo. Ao
capturar a estrutura hierarquica presente em muitos conjuntos de dados, como vendas por
produto e regiao, os modelos hierdrquicos permitem que informagoes de niveis superiores
sejam utilizadas para melhorar as previsoes em niveis inferiores. A regressao dinamica,
por sua vez, modela a evolugao das relagoes entre variaveis ao longo do tempo, capturando
efeitos de defasagem, cointegracao e nao estacionariedade. Ja os métodos de reconciliacao
garantem a consisténcia entre as previsoes agregadas e seus componentes, melhorando
a precisao e a interpretabilidade dos resultados. Em conjunto, essas técnicas permitem
analisar dados mais complexos, obter previsdes mais precisas e facilitar a compreensao

das relagoes hierarquicas entre as variaveis.

Além disso, ele utilizava uma forma de escrita de codigo que, embora fosse eficaz
na época de seu langamento, tornou-se datada em comparacao aos padroes modernos de
programacao. Hoje, um grande nimero de pacotes em R adota o estilo de programacao

tidy, que prioriza a legibilidade, a consisténcia e a eficiéncia do codigo.

Sendo um movimento iniciado em 2014 a partir do artigo Tidy Data de Hadley
Wickham, o estilo tidy é caracterizado por uma abordagem mais organizada e intuitiva
na manipulacdo e analise de dados. Ele utiliza fung¢oes que operam de maneira declarativa,
permitindo que o cédigo seja lido quase como uma sequéncia de instrugoes em linguagem
natural. Um dos aspectos centrais do estilo tidy é o uso do operador pipe (%>% ou |>),
que facilita o encadeamento de funcoes, tornando o fluxo de trabalho mais linear e facil

de seguir.

Ainda, o tidy promove a ideia de "tidy data”, onde os dados sdo organizados de
forma padronizada: cada varidvel em uma coluna, cada observacao em uma linha, e cada
tipo de unidade observacional em uma tabela separada. Esse formato simplifica tanto
a analise quanto a comunicacao dos resultados, tornando o cédigo mais compreensivel e

1menos propenso a erros.

O estilo tidy se tornou o padrao de fato para muitos usuarios de R, sendo ampla-
mente adotado por pacotes populares no ecossistema tidyverse, como dplyr, tidyr e

ggplot2. Esse movimento reflete uma evolucdo na pratica de programacao, onde a cla-
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reza, a reprodutibilidade e a eficiéncia sao priorizadas, facilitando o trabalho colaborativo

e a manutenc¢ao do cédigo ao longo do tempo.

O termo tidyverse foi criado em 2014, quando essa maneira de se organizar dados
e criar fungoes iniciou seu processo de consolidagao. Desde de 14, inimeros pacotes foram
desenvolvidos, atigindo outros nichos além da area de organizacao de dados, como os
campos de amostragem e modelagem. Enquanto os pacotes base do tidyverse tém como
objetivo a organizacao e manipulacao de dados estruturados, duas outras bibliotecas se

destacam

O pacote srvyr no R é uma extensao do pacote dplyr, projetada especificamente
para facilitar a manipulagao e analise de dados de pesquisas (survey data) com planos
amostrais complexos. Ele permite que os usuarios realizem analises de pesquisas usando a
sintaxe familiar do tidyverse, o que torna mais intuitivo e eficiente trabalhar com dados

de pesquisas que envolvem pesos amostrais, estratificacao e conglomerados.

J& o pacote tidymodels é uma colecdo de pacotes que fornece ferramentas para
a modelagem estatistica e aprendizado de maquina de uma maneira coesa, utilizando o
estilo de programacao tidyverse. Ele oferece uma abordagem unificada e consistente
para todo o ciclo de vida de modelagem, desde a pré-processamento de dados, criacao e

ajuste de modelos, tunagem de hiperparametros, até a avaliagdo e selecao de modelos.

Apesar dessa ampla cobertura, ainda havia uma lacuna significativa no universo de
pacotes tidy: a organizacao e modelagem de dados de séries temporais. Dados temporais
apresentam caracteristicas especificas que exigem abordagens e ferramentas especializadas
para sua analise adequada, algo que nao estava plenamente contemplado pelos pacotes

existentes.

A seguinte frase descrita por Wickham é citada por Hyndman como a motivagao
inicial para a descontinuidade do Forecast em vista do desenvolvimento de um novo con-
junto de pacotes de organizagao e modelagem de séries temporais que seriam construidos
utilizando a metodologia tidy, "Tidy datasets are all alike, but every messy dataset is
messy in its own way.” (Wickham 2014). Hyndman cita a especificidade ao se trabalhar

com dados temporais

Dados estruturados nao temporais possuem uma estrutura padrao em que cada
linha é uma observagao, que pode ser um individuo, pais, lugar e assim por diante, e
cada coluna representa uma variavel dessa observacao estudada. Por sua vez, dados
temporais trazem um desafio tnico. Em dados temporais, cada linha representa uma
unidade temporal (dia, més, ano, etc.), e cada coluna pode representar uma varidvel.
Esse tipo de dados requerem técnicas especiais para lidar com dependéncias temporais,
tendéncias e sazonalidades que nao estao presentes em dados estruturados convencionais.
A manipulacdo e andlise de dados temporais exigem ferramentas que possam manejar

essas caracteristicas intrinsecas do tempo, como a autocorrelagao e a variabilidade ao
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longo do tempo.

A manipulacdo de dados temporais apresenta desafios tinicos que vao além das
operagoes basicas de limpeza e transformacao de dados. A conversao de formatos de data
(por exemplo, de ano/més/dia para dia/més/ano), a imputagao de valores faltantes em
datas especificas e a unificacdo de dados de diferentes fontes com frequéncias distintas
exigem um conjunto caracteristico de ferramentas. Enquanto o tidyverse oferece uma
gama robusta de func¢des para manipulacao de dados em geral, a natureza sequencial e
temporal dos dados exige solugoes mais especializadas. A complexidade inerente a esses
problemas torna os pacotes do tidyverse insuficientes para lidar com as nuances da anélise

de séries temporais

A transformacao de datas, por exemplo, pode parecer trivial, mas possui desa-
fios tnicos. Diferentes paises e regioes utilizam formatos de data distintos (dia/més/ano,
més/dia/ano, ano/més/dia). A nado conversao para um formato padrao pode levar a in-
terpretagoes incorretas. Além disso ao trabalhar com dados de diferentes localidades, é
crucial considerar as diferengas de fuso horario. A nao conversdo para um fuso horario
comum pode gerar inconsisténcias nos dados, assim como a mudanga para o horario de
verao em algumas regides pode introduzir descontinuidades nos dados se nao for devida-
mente considerada. Ainda, a inclusdo ou exclusao de um dia extra a cada quatro anos,
caracteristica do ano bissexto, impacta diretamente a precisao de calculos envolvendo
datas. A falta de ajuste para o ano bissexto pode gerar descontinuidades e dificultar a

identificacdo de padroes sazonais.

Assim como acontece com dados ndo temporais, séries temporais também podem
apresentar valores faltantes. No entanto, enquanto técnicas de imputacao relativamente
simples, como a substituicao por média ou mediana, podem ser adequadas para dados nao
temporais, as séries temporais exigem abordagens mais sofisticadas devido a sua natureza
sequencial e dependéncia temporal. Valores faltantes em séries temporais representam
um desafio maior porque as imputacgoes imprecisas podem distorcer padroes temporais
fundamentais, como tendéncias, ciclos e sazonalidade. Por exemplo, substituir um valor
faltante em uma série temporal com a média geral pode ignorar variagoes sazonais impor-
tantes, levando a ajustes sazonais erroneos e, consequentemente, a previsdoes ou analises

imprecisas.

Além disso, a imputagao inadequada pode introduzir viés nos modelos preditivos,
afetando negativamente a capacidade do modelo de capturar a verdadeira estrutura dos
dados. Técnicas mais complexas, como interpolacao linear, suavizagao exponencial, ou até
mesmo modelos preditivos especificos para séries temporais, como ARIMA ou modelos de
estado espago, sdo frequentemente necessarias para preservar a integridade dos padroes

temporais.

Para preencher essa lacuna, Rob Hyndman, George Athanasopoulos e outros co-
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laboradores desenvolveram, no final de 2020, o conjunto de pacotes do tidyverts. Este
novo conjunto de ferramentas foi projetado para integrar o estilo de programacao do
tidyverse com os modelos avangados e robustos do pacote forecast. O tidyverts pro-
porciona uma solucao moderna e eficiente para a analise de séries temporais, alinhando-se
as praticas e padroes do tidyverse e promovendo um fluxo de trabalho mais coeso e

intuitivo para os usuarios.

A biblioteca tem como principais pacotes.

» tsibble: Para limpeza a manipulacao de bases de dados de séries temporais.

« fable: Para modelagem de séries, oferecendo os modelos ARIMA e suas variagoes
sazonais e com covariaveis, ETS, NNETAR, método de Croston, VAR, método
Theta.

« fabletools: Oferece ferramentas para construcao de modelos para o fable

o feasts: Para extracao de informacoes e estatisticas dos modelos ajustados e de

previsoes.

Cada pacote citado foi construido para o desenvolvimento de um pipeline de mo-

delagem e sua facil escalabilidade

Dado a facilidade de construgao de um processo de modelagem, com 6timo desem-
penho computacional, tal biblioteca de pacotes foi utilizada na plataforma de analises
estatisticas JFSalvandoTodos para a secao de previsao de casos confirmados das SRAGs.
Apesar da facilidade da construcao de um ciclo de limpeza, modelagem e previsao de
valores, notou-se rapidamente que o pacote de modelagem fable apresentava uma lacuna
ao se trabalhar com dados de contagem. Como ja citado anteriormente, a utilizacao do
modelo ARIMA e NNETAR apresentaram diferentes complexidades e obstaculos, indo
desde tempo de execucao computacional de modelagem extremamente alto, até previsoes

de valores negativos

Dado a necessidade de se trabalhar com modelos especificos para dados de conta-
gem, iniciou-se a ideia da criacdo de um pacote para esse fim, denominado posteriormente

de fableCount

Antes de destacar a criacao do pacote, devemos introduzir o conceito de pipeline
de dados e como o tidyverts e mais especificamente os pacotes fable e fableCount se

localizam em um processo de modelagem

3.2 PIPELINE DE DADOS

Os pipelines de dados tém suas raizes em conceitos de engenharia de software, onde

um “pipeline” refere-se a uma série de etapas interconectadas que processam dados de
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entrada para produzir uma saida desejada. Esses conceitos foram adaptados para o campo
da ciéncia de dados a medida que os pesquisadores comecaram a lidar com conjuntos de
dados cada vez maiores e mais complexos, exigindo abordagens sisteméaticas e escalaveis

para processamento e analise de dados.

Dentre o contexto de séries temporais, um pipeline pode ser divido em trés grandes

Processos

(i) Limpeza e Organizacido de dados: Esta etapa envolve o preparo dos dados
para analise. Isso pode incluir a deteccao e tratamento de valores ausentes, a remocao
de outliers, a corre¢do de erros de digitagdo e a padronizagao de formatos de dados.
Para séries temporais, também é importante garantir que os dados estejam organizados
corretamente no tempo, ou seja, em ordem cronoldgica, para que a analise subsequente

possa ser realizada adequadamente.

(i) Andlise e Engenharia de Caracteristicas: Nessa fase, sdo extraidas e
criadas caracteristicas (features) relevantes a partir dos dados brutos para melhorar a
capacidade preditiva dos modelos. Em séries temporais, isso pode envolver a criagao de
novas variaveis, como médias moveis, diferencas entre valores consecutivos, tendéncias, sa-
zonalidades e outras transformagoes que possam capturar padroes temporais importantes.
A anélise exploratéria de dados também é crucial nesta etapa para compreender melhor

as relagoes e caracteristicas dos dados.

(i) Modelagem e Previsao: A ultima etapa consiste na construgao e ajuste de
modelos para inferéncia ou previsao que serao utilizados para interpretacao de parametros
ou previsao de valores futuros. Isso pode incluir a aplicacdo de modelos estatisticos
tradicionais, como ARIMA e ETS, ou técnicas mais modernas de aprendizado de maquina,
como redes neurais feedforward (FFNN), tendo como exemplo o modelo NNETAR, redes
neurais recorrentes (RNNs) e as Long Short-Term Memory (LSTM). A avaliacdo dos
modelos é realizada através de métricas de desempenho, como os critérios de informacao
para modelos focados em inferéncia e métricos baseadas no erro como RMSE, MAE,

MAPE para modelos com foco em previsao.

O seguinte fluxograma foi elaborado para exemplificar um pipeline de modelagem

utilizando o framework do tidyverts
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O pacote construido e descrito nesse trabalho, fableCount, se localiza na etapa

ocupada pelo pacote fable, tendo como foco a disponibilizacao de modelos temporais
de contagem e algoritmos para a automatizagao de tal processo. Ele surge como uma

extensao ao fable, onde sua versao base nao apresenta modelos para dados de contagem

Além do fableCount, outros pacotes foram desenvolvidos como extensao ao fable

base e que valem serem mencionados.

O primeiro foi o fable.prophet, pacote que tem como objetivo disponibilizar o
modelo prophet para usuarios do tidyverts. O prophet foi um modelo de séries temporais
criado pelo Facebook (agora META), e tem como principal caracteristica a capacidade de
modelar sazonalidade complexa em conjunto de dados de alta dimensionalidade ao mesmo

tempo que se mostra robusto a valores faltantes.

O segundo foi o fable.binary que tras modelos para séries temporais binarias. Ele
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possui 2 modelos principais: logistico e NNET. O modelo logistico temporal se assemelha
ao modelo logistico padrao, vindo da teoria de modelos lineares generalizados, sendo uma
extensao a dados temporais. J4 o NNET é um modelo baseado em redes neurais, mais
especificamente em uma rede feedforward com apenas uma camada oculta, chamada de

Single Layer Perceptron (SLP)

Assim o pacote construido e detalhado nesse trabalho é a terceira extensao ao
fable. Apesar dos pacotes descritos serem distintos entre si, onde cada um possui sua
propria gama de modelos e nicho especifico, a construcao de cada um é feita com base
nas especificagoes do tidyverts, utilizando a biblioteca fabletools para construcao de
pacotes de extensao ao fable. Assim, todos eles possuem a mesma estrutura de utilizacao
em codigo R e podem ser implementados em um mesmo pipeline, facilitando comparacao
entre modelos, como a busca por aquele de melhor qualidade de ajuste, melhores valores

previstos e melhores tempos de execucao computacional

3.3 ESTRUTURA DO PACOTE

Um pacote em R segue uma estrutura base, que inclui espagos distintos dedicados

ao armazenamento de fungoes, conjuntos de dados e informacoes especificas do pacote.

Dentro do escopo das fungoes de um pacote, existem dois grupos principais: as
fungoes externas, que sao disponibilizadas para uso direto pelo usuario, e as fungoes
internas, que sao utilizadas exclusivamente dentro do pacote e nao estao acessiveis ao

Usuario.

Como sera detalhado nos proximos tépicos, a principal funcionalidade do pacote
¢é a disponibilizagdo de métodos automatizados para a selecdo de modelos. As funcgoes
responsaveis pela execugao desses métodos automatizados sao fungoes internas, nao expor-
tadas diretamente para o usuario. Em vez disso, o acesso a esses métodos é feito através
de uma funcao principal de modelagem, que contém gatilhos para acionar as funcoes

automatizadas conforme necessario.

Essa explicacdo é crucial, pois o nimero de fungoes descritas neste trabalho é
significativamente menor do que o total de fungoes disponiveis internamente no pacote.
O foco estd nas fungoes acessiveis ao usuario, embora uma complexa infraestrutura de

fungoes internas suporte e automatize os processos de modelagem.

As segoes "Implementagao INGARCH” e "Implementagdio GLARMA” descrevem
detalhadamente as fungoes exportadas ao usuario que estao associadas a cada um desses
modelos. No capitulo subsequente, ”Algoritmos para Automatizacao de Modelagem”, é
apresentada a construcao das funcoes responsaveis pela selecao automatica de distribui-
¢oes, ordens de parametros, e modelos de previsao. Por serem de uso interno, essas fungoes

nao sao exportadas para o usuario e, portanto, nao podem ser acessadas diretamente em
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um arquivo ".R”.

Além disso, para uma melhor compreensao das préximas secoes e capitulos, é
necessario explicar certos tipos de objetos do R que sao especificos para as etapas de
organizacao e modelagem de séries temporais. Esses objetos, devido ao seu nicho de
aplicagdo, nao sao comumente utilizados por usuarios gerais do R, mas sdo essenciais

para o trabalho com séries temporais.

« tibble - Se autodenomina como a versao aperfeicoada de uma data.frame, e é o

objeto tabular padrao do Tidyverse

« tsibble - E um Time Series Tibble, ou um Tibble para Séries Temporais. Possui a
estrutura padrao de um tibble, trazendo maiores funcionalidades para manipulacao
de datas

« mable - E um Model Table, ou uma Tabela de Modelos. Esse termo refere-se a uma
estrutura que armazena diferentes modelos ajustados em um formato de tabela,

facilitando a comparacao e a andlise dos modelos em um tnico quadro de dados.

Representa o objeto de retorno ao se utilizar a funcdo INGARCH() e GLARMA()

3.4 IMPLEMENTACAO INGARCH

Para implementacao da estimacgao e producao de previsoes, o pacote tscount é

utilizado. O pacote construido oferece 6 fungdes aos usuarios relacionadas ao modelo
INGARCH

Sao elas:
« INGARCHY() - Fungao base para estimagao do modelo INGARCH
o fitted() - Extrai os valores estimados de um modelo construido

 forecast() - Estima valores para um intervalo de tempo futuro, ou seja, previsao

de novos valores

o glance() - Retorna as métricas erro-padrao, log-verossimilhanga, AIC e BIC do

modelo construido
« residuals() - Extrai os residuos de um modelo construido

« tidy() - Retorna os coeficientes do modelo, assim como suas métricas de variancia,

e intervalo de confianca

Cada funcao possui um objeto de entrada especifico e um objeto de retorno cor-

respondente. Além disso, algumas fungoes incluem argumentos adicionais que precisam
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ser explicados em detalhes para garantir um uso adequado do pacote. Para oferecer um
entendimento mais aprofundado, cada funcao foi detalhadamente descrita nos topicos a

seguir.

3.4.1 INGARCH()

E a funcéo base para estimacio de modelo INGARCH.

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira

Exemplo chamada modelo INGARCH

dados |>
fabletools: :model (

nome_modelo = fableCount: :INGARCH(variavel_reposta ~ pq(ordem_AR, ordem_MA))
)

Elaborado pelo autor (2025)

Possui os seguintes argumentos.

o formula - Argumento que define as ordens autorregressiva e de médias méveis do

modelo. Esse argumento possui 3 parcelas distintas.

pq - Define os termos autorregressivas e de médias mdveis nao sazonais, pode ser
definido pelo usuario, ou se for omitido, o algoritmo de selecdo automatica de pa-
rametros é acionado. O algoritmo de selecao automatica de parametros ajustara o

melhor modelo com base no critério de informagao

P@ - Define os termos autoregressivos e médias moveis sazonais, pode ser definido
pelo usuario, ou se for omitido, o algoritmo de sele¢do automéatica de parametros é
acionado (gatilho padrao aciona o algoritmo de selagdo ARMA-Based). Tal algoritmo

serd detalhado no proximo capitulo

xreg - Define varidveis exdgenas para utilizacado no modelo.

e ic - Representa o critério de informagao que deve ser utilizado se o algoritmo de se-

lecao automatica de parametros for acionado, possuindo as opgoes "AIC” ou "BIC”

e link - Funcao de ligacao que deve ser utilizada para o modelo generalizado, pos-

suindo as opg¢oes "identity” ou "log”

o distr - Funcao de densidade de probabilidade que deve ser utilizada para o modelo
generalizado, possuindo as opgdes "poisson” ou "nbinom” (binomial negativa). Se
esse argumento for omitido, o algoritmo de selecdo automatica de distribuicao é

acionado
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o algorithm - Define qual o algoritmo de sele¢do automatica de ordem de parame-

tros vai ser utilizado no caso das ordens "pq” serem omitidas. Possui 3 opgoes,

"naive search”, "arma_ based” e "LASSO”.

Cada método de selecao automatica de distribuicao e selegao automatica de or-
dens de parametros sera aprofundado no capitulo ”Algoritmos para Automatizacao de

Modelagem”
A func¢ao tem como objeto de retorno um “mabble”

Um exemplo considerando um modelo INGARCH(2,1) é dado na seguinte imagem.
O modelo construido foi chamado de exem__model _ingarch e foi utilizado novamente
para exemplifica¢Oes nas demais fungoes. Os dados utilizados para sua estimacao foram
simulados a partir de um modelo INGARCH(2,1) com distribuigdo Poisson com tamanho

amostral igual a 100

Exemplo utilizagdo INGARCH

exem_model_ingarch = serie_simulada |>
fabletools: :model (
ing = fableCount: :INGARCH(var_respost

distr =
Tink =

Elaborado pelo autor (2025)

O objeto de retorno é um mable tendo a seguinte estrutura

Exemplo objeto de retorno mable INGARCH

1 <INGARCH(2, 1):

Elaborado pelo autor (2025)

3.4.2 fitted()

Funcao que tem como objetivo extrair os valores estimados de um modelo cons-

truido e possui os seguintes argumentos

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira
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Exemplo funcao fitted INGARCH

modelo_ingarch = dados |[>
fabletools: :model(
nome_modelo = fableCount: :INGARCH(variavel_reposta ~ pq(ordem_AR, ordem_MA))
)

modelo_ingarch [>
fitted()

Elaborado pelo autor (2025)

» object - Este é o argumento principal da func¢ao e refere-se ao modelo de série

temporal que foi previamente ajustado.

e ... - Argumentos adicionais que podem ser passados para métodos especificos de
subclasses. Geralmente, esses argumentos nao sao necessarios para o uso basico da

funcao.

Utilizando novamente o modelo construido, exem__model ingarch, que dado
um numero de observagoes igual a 100, teve um intervalo temporal de estudo definido

como 1901 a 2000 (100 anos), a funcao fitted apresenta a seguinte estrutura de retorno

Exemplo utilizagao fitted INGARCH

exem_model_ingarch [=>

fittedO

Elaborado pelo autor (2025)

Exemplo retorno fitted INGARCH

) . 11
model date .fitted

1901
1902
1903
1904

1905
1906
1907
1908
1909
1910

WO o0 O W

Elaborado pelo autor (2025)
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3.4.3 forecast()

Funcao para o cédlculo de previsdes. Para previsoes de 1 passo a frente, ele retorna
uma previsao paramétrica, baseada na distribuicao especificada pelo parametro ’distr’.
Para previsoes de multiplos passos a frente, a distribuicdo nao é conhecida analiticamente,

entao é utilizado um bootstrap paramétrico.
Em um fluxo de modelagem, a funcao é chamada da seguinte maneira

Exemplo func¢ao forecast INGARCH

modelo_ingarch [>

forecast(h = horizonte_de_previsio)

Elaborado pelo autor (2025)

Possui os seguintes argumentos.

e object - Este é o argumento principal da funcao e refere-se ao modelo de série

temporal que foi previamente ajustado.

e h - Controla o horizonte de previsao. E um valor numérico que especifica o niimero

de passos a frente para os quais as previsoes serao geradas

« new__data - Se o modelo construido possuir variaveis exogenas, essas devem tem

seus valores futuros passados através desse argumento .

e ... - Argumentos adicionais que podem ser passados para métodos especificos de
subclasses. Geralmente, esses argumentos nao sao necessarios para o uso basico da

funcao.

A funcao tem como objeto de retorno um tsibble, contando com 4 colunas: a
primeira é o nome do modelo, a segunda é a data que do forecast, a terceira é a distribuicao
da previsao para aquele momento do tempo (a distribuigdo é utilizada para construgao

de intervalos de confianga) e a quarta coluna representa a média da previsao
Utilizando novamente o modelo construido, exem__model__ingarch.

E importante que a funcio forecast pode ter 2 tipos de retorno dependendo do
horizonte de previsao escolhido para o modelo INGARCH. Para previsao de 1 passo a

frente, a distribuigao escolhida para o modelo é utilizada.

J& para previsoes possuindo um horizonte de previsao maior que 1, a distribuicao
analitica nao é conhecida e portanto um bootstrap paramétrico é utilizado para a previsao

de valores

Para um horizonte de previsao de 1 passo a frente, a funcao possui o seguinte

comportamento
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Exemplo utilizagao forecast INGARCH (h = 1)

exem_model_ingarch [>

fabletools: :forecast(h = 1)

Elaborado pelo autor (2025)

Exemplo retorno forecast INGARCH (h = 1)

Elaborado pelo autor (2025)

Ja para um horizonte igual a 10 (sendo portanto maior que 1), a funcao apresenta

a seguinte estrutura

Exemplo utilizacao forecast INGARCH (h > 1)

exem_model_ingarch |>
fabletools: :forecast(h = 10)

Elaborado pelo autor (2025)

Exemplo retorno forecast INGARCH (h > 1)

2001 sample[1000]
2002 sample[1000]
2003 sample[1000]

2004 sample[1000]
2005 sample[1000]
2006 sample[1000]
2007 sample[1000]
2008 sample[1000]
2009 sample[1000]
2010 sample[1000]

Elaborado pelo autor (2025)

E possivel ver as diferencas entre os objetos de retorno. Enquanto o primeiro
possui no coluna ”"x”, a distribuicao utilizada para estimagao do modelo, onde no exemplo
M,

utilizado ¢ uma Poisson, a segunda previsao apresenta na coluna ”"x” uma distribuicao

baseada em um bootstrap paramétrico de 1000 valores
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3.4.4 glance()

Funcao que retorna uma tabela com as métricas erro-padrao, log-verossimilhanca,
AIC e BIC do modelo construido.

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira

Exemplo fun¢ao glance INGARCH

modelo_ingarch |[>

glance()

Elaborado pelo autor (2025)

Possuindo os seguintes argumentos

o x - Este é o argumento principal da fungao e refere-se ao modelo de série temporal

que foi previamente ajustado.

e ... - Argumentos adicionais que podem ser passados para métodos especificos de
subclasses. Geralmente, esses argumentos nao sao necessarios para o uso basico da

funcao.

ZtT:o(ét)Q

O erro-padréo ¢é calculado a partir do estimador néo viciado dado por <=5

Utilizando novamente o modelo construido, exem__model ingarch, a funcao

apresenta a seguinte estrutura de retorno

Exemplo utilizacao glance INGARCH

exem_model_ingarch |>

fabletools: :glance()

Elaborado pelo autor (2025)

Exemplo retorno glance INGARCH

> exem_model_in

Elaborado pelo autor (2025)
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Exemplo funcao residuals INGARCH

modelo_ingarch |[>

residuals ()

Elaborado pelo autor (2025)

3.4.5 residuals()
Funcao que extrai os residuos do modelo construido.

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira

Possui apenas um argumento

e object - Este é o argumento principal da funcao e refere-se ao modelo de série

temporal que foi previamente ajustado.

Utilizando novamente o modelo construido, exem__model ingarch, a func¢ao

apresenta a seguinte estrutura de retorno

Exemplo utilizagao residuals INGARCH

exem_model_ingarch |>

residuals ()

Elaborado pelo autor (2025)

Exemplo retorno residuals INGARCH

Elaborado pelo autor (2025)
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3.4.6 tidy()

Fungao para extrair métricas sobre os coeficientes. A funcao retorna a estima-
tiva pontual, desvio-padrao e intervalo de confianca. O intervalo de confianga pode ser

calculado através da aproximacao via distribuicao Normal ou via Bootstrap

Por padrao, os erros padrao e os intervalos de confianca sao baseados em uma
aproximacao normal do estimador de maxima verossimilhanca. Os erros padrao sao as
raizes quadradas dos elementos diagonais da inversa da matriz de informacao. Ja para
o erro padrao para o coeficiente de sobredispersao ”sigmasq” quando a distribuicao
Binomial Negativa ¢ utilizada, como nao hé uma aproximagao analitica, seu erro padrao

e seu intervalo de confianga sdo definidos como NA.

Ela possui os seguintes argumentos

» object - Este ¢ o argumento principal da funcao e refere-se ao modelo de série

temporal que foi previamente ajustado.

o type - Refere-se ao a forma na qual o intervalo e confianca deve ser calculado.
"normalaproxx” se refere a uma aproximagcao via distribuicio Normal e "boot” se

refere a método de bootstrap paramétrico

e ... - Argumentos adicionais que podem ser passados para métodos especificos de
subclasses. Geralmente, esses argumentos nao sao necessarios para o uso basico da

funcao.

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira

Exemplo fungao tidy INGARCH

modelo_ingarch |>

tidy()

Elaborado pelo autor (2025)

Utilizando novamente o modelo construido, exem__model ingarch, a func¢ao

apresenta a seguinte estrutura de retorno

Exemplo utilizacao tidy INGARCH

exem_model_ingarch |=>

fabletools: :tidy()

Elaborado pelo autor (2025)
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Exemplo retorno tidy INGARCH

e: 4
term ate std.error "CI(lower) ™ "CI(upper)

(constant) 1.06

ar_1 - 0.0992 0.0435
ar_2 - 0.143 0.0333
ma_1 - 0.202 -0.113

Elaborado pelo autor (2025)

3.5 IMPLEMENTACAO GLARMA

Assim como as func¢ao do modelo INGARCH, todas a fun¢des do modelo GLARMA
foram explicitadas. A estrutura de fung¢odes para a utilizagdo por parte do usuario é a
mesma do INGARCH, porém alguns pardmetros das fungoes sao distintos, dado a forma

de estimagao de cada modelo
Temos as seguintes fungoes elas:
« GLARMA() - Fungao base para estimagao do modelo GLARMA
o fitted() - Extrai os valores estimados de um modelo construido

» forecast() - Estima valores para um intervalo de tempo futuro, ou seja, previsao

de novos valores

« glance() - Retorna as métricas erro-padrao, log-verossimilhanga, AIC e BIC do

modelo construido
 residuals() - Extrai os residuos de um modelo construido

« tidy() - Retorna os coeficientes do modelo, assim como suas métricas de variancia,

e intervalo de confianca

3.5.1 GLARMA()

E a funcéo base para estimacio de modelo GLARMA.

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira
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Exemplo chamada modelo GLARMA

dados |>
fabletools: :model(

nome_modelo = fableCount::GLARMA(variavel_reposta ~ pq(ordem_AR, ordem_MA))

)

Elaborado pelo autor (2025)

Possui os seguintes argumentos.

o formula - Argumento que define as ordens autorregressiva e de médias moéveis do

modelo. Esse argumento possui 3 parcelas distintas.

pq - Define os termos autorregressivas e de médias moéveis nao sazonais, pode ser
definido pelo usuario, ou se for omitido, o algoritmo de selecdo automatica de pa-
rametros é acionado. O algoritmo de selecao automatica de parametros ajustara o

melhor modelo com base no critério de informagao

P@ - Define os termos autorregressivos e médias moveis sazonais, pode ser definido
pelo usuario, ou se for omitido, o algoritmo de selecdo automatica de parametros
¢ acionado (somente para o algoritmo ’arma_ to_glarma’). O algoritmo de selec¢ao
automatica de parametros vai se ajustar ao melhor modelo baseado no critério de

informagao

xreg - Define variaveis exdgenas para utilizacdo no modelo.

e ic - Representa o critério de informacao que deve ser utilizado se o algoritmo de se-

lecdo automatica de parametros for acionado, possuindo as opgoes "AIC” ou "BIC”

o distr - Funcao de densidade de probabilidade que deve ser utilizada para o modelo
generalizado, possuindo as opgoes “poisson” ou "nbinom”(binomial negativa). Se
esse argumento for omitido, o algoritmo de selecao automatica de distribuicao é

utilizado

« method - Método iterativo que deve ser utilizado para a estimacao do modelo.

Possui as opgoes "FS” (Fisher scoring) e "NR” (Newton-Raphson)

o algorithm - Define qual o algoritmo de selecao automatica de ordem de para-
metros vai ser utilizado no caso das ordens pq serem omitidas. Possui 2 opg¢oes,

"naive_search”, "arma_ based”.

 residuals - Tipo de residuo para ser utilizado (como definido na se¢ao de defini¢ao

matematica do modelo). Possui as opgoes "Pearson” e "Score”
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Cada método de selecao automatica de distribuicao e selecao automatica de or-
dens de parametros sera aprofundado no capitulo ”Algoritmos para Automatizacao de

Modelagem”
A func¢ao tem como objeto de retorno um “mabble”

Um exemplo considerando um modelo GLARMA(1,0) é dado na seguinte imagem.
O modelo construido foi chamado de exem__model__glarma e foi utilizado novamente
para exemplificagoes nas demais fungoes. Os dados utilizados para sua estimagao foram

simulados a partir de um modelo GLARMA(1,0) com tamanho amostral igual a 100

Exemplo utilizaggo GLARMA

115
116 exem_model_glarma = serie_simulada |>
117 fabletools: :model (

gla = GLARMA(var_resposta ~ pq(l, 0),

method = "F5",

distr = "poisson')

Elaborado pelo autor (2025)

Exemplo objeto de retorno mable GLARMA

exem_model_glarma
# A mable: 1 x 1
1

[

<moae />
<GLARMA(1, 0)>
>

Elaborado pelo autor (2025)

3.5.2 fitted()

Funcao que tem como objetivo extrair os valores estimados de um modelo cons-

truido e possui os seguintes argumentos

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira
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Exemplo funcao fitted GLARMA

modelo_glarma = dados [>
fabletools: :model (
nome_modelo = fableCount: :GLARMA(variavel_reposta ~ pq(ordem_AR, ordem_MA))

)

modelo_glarma |>
fitted()

Elaborado pelo autor (2025)

» object - Este é o argumento principal da func¢ao e refere-se ao modelo de série

temporal que foi previamente ajustado.

e ... - Argumentos adicionais que podem ser passados para métodos especificos de
subclasses. Geralmente, esses argumentos nao sao necessarios para o uso basico da

funcao.

Utilizando novamente o modelo construido, exem__model _glarma, que dado
um nimero de observagoes igual a 100, teve um intervalo temporal de estudo definido

como 1901 a 2000 (100 anos), a funcao fitted apresenta a seguinte estrutura de retorno

Exemplo utilizagao fitted GLARMA

exem_model_glarma |>

fitted

Elaborado pelo autor (2025)
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Exemplo retorno fitted GLARMA

exem_model_glarma |[>
fitted()
# A tsibble: 100 x 3 [1Y]
# Key: .model [1]
.mode1l date .fitted

10.

14,
9.

~J

11.
11.
11.
11.
13,
10.
11.

OWoO v BwMm B
OCOoONREFEFWw~NWwUNE WO

=

# i 90 more rows
# i Use print(n = ...) ee more rows

Elaborado pelo autor (2025)

3.5.3 forecast()

Funcao para o calculo de previsdes. A funcao retorna uma previsao paramétrica,
baseada na distribuigdo especificada pelo parametro "distr”, independentemente do hori-
zonte de previsao solicitado. Diferente do método de forecast do INGARCH, que retorna
uma previsao baseado em um bootstrap paramétrico para horizontes de previsao maiores

que 1

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira

Exemplo funcao forecast GLARMA

modelo_glarma |>

forecast(h = horizonte_de_previsio)

Elaborado pelo autor (2025)

Possui os seguintes argumentos.

» object - Este é o argumento principal da funcao e refere-se ao modelo de série

temporal que foi previamente ajustado.

e h - Controla o horizonte de previsao. E um valor numérico que especifica o nimero

de passos a frente para os quais as previsoes serao geradas
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e ... - Argumentos adicionais que podem ser passados para métodos especificos de
subclasses. Geralmente, esses argumentos nao sao necessarios para o uso basico da

funcao.

A funcao tem como objeto de retorno um tsibble, contando os 4 colunas: a primeira
¢ o nome do modelo, a segunda ¢é a data que o valor foi predito, a terceira ¢ a distribuicao
da previsao para aquele momento do tempo (a distribui¢ao é utilizada para construgao

de intervalos de confianga) e a quarta coluna representa a média da previsao

Como ja destacado, diferente da fungdo construida para o modelo glarma, que
utiliza um bootstrap paramétrico para previsdes maiores que 1 passo a frente, a funcao
forecast para o modelo GLARMA utiliza a distribuicdo de probabilidade especificada
independentemente do tamanho do horizonte de previsao. Ou seja as previsoes sao geradas

de forma direta a partir da distribuicao assumida para o processo

Utilizando novamente o modelo construido, exem__model _glarma.

Exemplo utilizagao forecast GLARMA (h = 1)

exem_model_glarma |>

fabletools: :forecastch = 1)

Elaborado pelo autor (2025)

Exemplo retorno forecast GLARMA (h = 1)

exem_model_glarma |>
fabletools: :forecast(h = 1)

A fable: 1 x 4 [1Y]

ley: .mode1 [1]

.model date var_resposta .mean

<P T T Y
<cnr»> <aeil> <ATIST>

gla 2001 Pois(10)

FTFHRt VY

Elaborado pelo autor (2025)

Ja para um horizonte igual a 10 (sendo portanto maior que 1), vemos que a fungao

apresenta a mesma distribuicdo de quando calculamos uma previsao 1 passo a frente

Exemplo utilizagao forecast GLARMA (h > 1)

8 exem_model_glarma |>

fabletools: : forecast(h = 10)

Elaborado pelo autor (2025)
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Exemplo retorno forecast GLARMA (h > 1)

>
> exem_model_glarma |>
fabletools::forecast(h = 10)
: 10 4 [1v]
.model [1]
date var_resposta

Pois(10)
Pois(12)

Pois(11l)
Pois(11)
Pois(17)
Pois(18)

Pois(6)
Pois(10)
Pois(14)
Pois(13)

W~V b WNE

A

Elaborado pelo autor (2025)

3.5.4 glance()

Funcao que retorna uma tabela com as métricas erro-padrao, log-verossimilhanca,
AIC e BIC do modelo construido.

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira

Exemplo fun¢ao glance GLARMA

modelo_glarma |>

glance()

Elaborado pelo autor (2025)

Possuindo os seguintes argumentos
o x - Este é o argumento principal da func¢ao e refere-se ao modelo de série temporal
que foi previamente ajustado.

e ... - Argumentos adicionais que podem ser passados para métodos especificos de
subclasses. Geralmente, esses argumentos nao sao necessarios para o uso basico da

fungao.

Utilizando novamente o modelo construido, exem__model _glarma, a funcao

apresenta a seguinte estrutura de retorno

Exemplo utilizacao glance GLARMA

exem_model_glarma |>

glance()

Elaborado pelo autor (2025)
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Exemplo retorno glance GLARMA

exem_model_glarma |>
glance()

A tibble: 1 x 4

.model sigma2 Tog

>
>
+

ey g Al T -
<Chnr=> <ap > <C

gla 17.0

Elaborado pelo autor (2025)

3.5.5 residuals()

Funcao que extrai os residuos do modelo construido.

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira

Exemplo fungao residuals GLARMA

145
146 modelo_glarma |>

147 residuals()
148

Elaborado pelo autor (2025)

Possui apenas um argumento

e object - Este é o argumento principal da funcao e refere-se ao modelo de série

temporal que foi previamente ajustado.

Utilizando novamente o modelo construido, exem__model _glarma, a fungao

apresenta a seguinte estrutura de retorno

Exemplo utilizagao residuals GLARMA

exem_model_glarma |[>

residuals()

Elaborado pelo autor (2025)
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Exemplo retorno residuals GLARMA

exem_model_glarma |>
residuals()
# A tsibble:

.model date .
gla

gla 1902

gla 1903

gla 1904

gla 1905

gla 1906

gla 1907

1908

1909

1910

90 more rows

‘print(n = ...)" ee more rows

ST WWOHORNE W WA

1
2
3
4
5
6
7
8
9
0

B

Elaborado pelo autor (2025)

3.5.6 tidy()
Funcéo para extrair métricas sobre os coeficientes. A funcao retorna a estimativa
pontual, desvio-padrao e z-ratio e o p-valor do parametro estudado

Ela possui os seguintes argumentos

« object - Este é o argumento principal da funcao e refere-se ao modelo de série

temporal que foi previamente ajustado.

o type - Refere-se ao a forma na qual o intervalo e confianca deve ser calculado.
"normalaproxx” se refere a uma aproximagcao via distribuicio Normal e "boot” se

refere a método de bootstrap paramétrico

e ... - Argumentos adicionais que podem ser passados para métodos especificos de
subclasses. Geralmente, esses argumentos nao sao necessarios para o uso basico da

funcao.

Em um fluxo de modelagem, a funcao é chamada da seguinte maneira
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Exemplo fun¢ao tidy GLARMA

modelo_glarma |>

tidyQ

Elaborado pelo autor (2025)

Utilizando novamente o modelo construido, exem__model _glarma, a func¢ao

apresenta a seguinte estrutura de retorno

Exemplo utilizacao tidy GLARMA

exem_model_glarma |>

tidy O

Elaborado pelo autor (2025)

Exemplo retorno tidy GLARMA

exem_model_glarma |>
tidy ()
# A tibble: 4 x 4
.model statistic intercept
<chrs chr> <adb 1>

<ap I >

=L/ =L

estimate 2.39 0.0939
std_error 0.0397 0.0230
Z_ratio 60.1 4.08
p_value 0 0.0000445

Elaborado pelo autor (2025)
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3.6 DISPONIBILIZACAO E IDENTIDADE VISUAL

Como ja citado anteriormente, umas das mais famosas caracteristicas do R, sendo a
mais famosa, é o suporte da comunidade através do desenvolvimento de pacotes gratuitos.
E buscando facilitar o acesso dos usuarios a esses pacotes desenvolvidos pelas comunidade,
o time R (R team) como é conhecida a equipe de pesquisadores do R, disponibiliza 2 opgoes

para publicagao de pacotes.

A primeira e mais simples é pelo Github. O Github é uma plataforma virtual
gratuita para armazenamento de repositérios utilizando o sistema Git. Essa opcao é
utilizada para armazenamento do pacote em sua fase inicial, ou fase de desenvolvimento.
E uma opc¢do mais simples pois o pacote desenvolvido nao passa por nenhum tipo de teste

antes da publicacao e sua manutencao se da exclusivamente pelo desenvolvedor

Ja a segunda opg¢ao e que se mostra como o padrao ouro para todo pacote bem
estruturado é via CRAN. O CRAN (Comprehensive R Archive Network) é o repositério
oficial de pacotes do R e para um pacote ser aceito e publicado nesse repositorio é necessa-
rio a aprovacao em diversos testes automatizados de software e testes nao automatizados
realizados pelo time R. Dado a robustez de testes, pacotes publicados no CRAN possuem
um maior grau de acabamento e detalhes, possuindo menos erros e com uma documenta-

¢ao maior e mais detalhada quando comparados aos pacotes disponibilizados apenas no
Github

O pacote estudado nesse trabalho, fableCount, possui um repositorio oficial no

Github para versoes de desenvolvimento e também possui sua versdao oficial ja aceita e
publicada no CRAN.

Além dessas 2 formas de baixar o pacote, uma pagina na web foi criada no intuito
de disponibilizar de maneira simplicada a documentagao oficial do pacote, facilitando o

entendimento de cada modelo e funcao por parte dos usuarios

Portanto os meios oficias de comunicacao e disponibilizagao do pacotes sao:

o Github: Repositorio onde versoes em desenvolvimento sao armazenadas. Nele, os
métodos e modelos mais recentes sao disponibilizados, embora ainda nao tenham
passado por um processo intensivo de testes e documentacao. Esses recursos estao
em fase experimental e podem sofrer alteracoes antes de serem integrados as versoes

estaveis. Pode ser acessado via: https://github.com/Gustavo039/fableCount

o« CRAN: Repositorio onde a versao oficial do pacote é armazenada. A versao dispo-
nivel passou por um rigoroso processo de testes e documentagao, tanto pela equipe
de desenvolvimento do pacote quanto pelo time do R. Como resultado, a probabili-

dade de erros nas fungdes disponibilizadas é extremamente baixa, garantindo maior


https://github.com/Gustavo039/fableCount
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estabilidade e confiabilidade para os usuarios. Pode ser acessado via: https://cran.r-

project.org/web /packages/fableCount/

« Pagina Web Oficial: Pé4gina que oferece a documentacao oficial do pacote, in-
cluindo exemplos detalhados de uso e aplicacdo de cada funcao. Além disso, apre-
senta uma linha do tempo que destaca as novidades introduzidas em cada versao
e suas respectivas datas de lancamento. A pédgina também conta com uma secao
dedicada aos autores e as fundacoes de fomento que contribuiram para o desenvolvi-

mento do pacote. Pode ser acessado via: https://gustavo039.github.io/fableCount/

Um dos pontos de sucesso do tidyverse é sua identidade visual, onde cada pacote
conta com cores, fontes, logo e estilizagdo prépria. Essa estratégia auxilia na classificacao

de cada pacote pelos usudrios.

Durante a criacao da pagina web, identificou-se a necessidade de desenvolver uma
identidade visual para o pacote, considerando o crescimento de pacotes que funcionam
como extensdao do fable. Tornou-se essencial estabelecer um nome e uma identidade
visual distintos para garantir uma diferenciacdo clara em relagdo aos demais. Buscando
atender tais critérios,a identidade visual do pacote foi criada, incluindo conjunto de cores,

tipografia, logotipo oficial e sua descrigao

A identidade visual do pacote precisava seguir o padrao do fable base, reforcando
sua natureza como uma extensao ao pacote original, mas também foi desenvolvida estrate-
gicamente para melhorar a diferenciacdo em relagao aos demais pacotes fable, facilitando
o reconhecimento pelos usuarios.

Considerando fatores como: cor, fonte, arte central e nome explicitado, o pacote

teve o seguinte logo construido

Logo FableCount

fableCount

Elaborado pelo autor (2025)

Vemos que em comparagao com a logo do pacote fable, ele se diferencia em relagao

a fonte utilizada, assim como na estilizacdo arte central. Apesar disso, o tom azulado e


https://cran.r-project.org/web/packages/fableCount/
https://cran.r-project.org/web/packages/fableCount/
https://gustavo039.github.io/fableCount/
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e o grafico temporal no centro da imagem continuam presentes. Dessa forma, o pacote
criado possui a sua propria identidade, reforgando seus aspecto tinicos, mas sem esquecer

totalmente do pacote origial para o seu desenvolvimento

Comparagao fableCount e fable

Elaborado pelo autor (2025)
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4 ALGORITMOS PARA AUTOMATIZACAO DE MODELAGEM

O seguinte capitulo tem como objetivo apresentar cada parte do fluxo de modela-

gem automatizadas disponibilizada no pacote.

E importante destacar o nome dado para tal processo: ”Algoritmos para Automa-
tizacao”. No contexto de generalizacao e mecanizacao de processos, 3 palavras similares
mas que possuem significados distintos sao comumente utilizadas fora de seus nichos es-

pecificos, sendo elas "automético”, "automagao” e "automatizacao”

A palavra ”automatico” buscar descrever algo que opera por si s0, sem a necessi-
dade de intervencao humana continua, e portanto ¢ um adjetivo que descreve algo que
funciona por conta prépria. Onde seu desenvolvimento foi idealizado para que nao hou-

vesse intervencao humana em nenhum momento do processo.

A 7automacao” estd diretamente ligada a processos industriais. Refere-se a um
mecanismo ou sistema que opera praticamente sem a intervencao humana. Ele esta di-
retamente ligado ao conceito de Industria 4.0 ou das chamadas "fabricas inteligentes”,
integrando diferentes tecnologias para melhorar a gestdo e aumentar a produtividade.
Além de executar a tarefa que foi programada, o sistema de automacao industrial pode
aprender a melhor forma de desempenhé-la, acionar outros sistemas e fazer escolhas sem
necessitar de ajuda humana. Ou seja, ele é capaz de analisar o préprio trabalho e tomar

decisoes sozinho.

J& um mecanismo automatizado, refere-se a algo que foi configurado ou adaptado
para operar de maneira automatica. Este termo geralmente implica que um processo,
tarefa ou sistema que anteriormente requeria interven¢do manual foi modificado para
funcionar de maneira auténoma. Ou seja, tal mecanismo ainda pode possuir intervencao

humana em seu Processo.

O pacote desenvolvido possui algoritmos para selecao automatica de distribuicao,
para selecao automatica de parametros e para busca de melhor modelo de previsao, porém
a chamada desses nao é obrigatéria, permitindo ao pesquisador escolher métodos mais
tradicionais de modelagem. Além disso, cada algoritmo possui diferentes métodos de
serem abordados, necessitando de uma especificacdo inicial por parte do usuario. Assim,

a palavra que melhor se encaixa no contexto estudado é a de "automatizacao de processos”.

Apesar do método como um todo ser melhor descrito a partir da palavra "automa-
tizado”, cada passo de processo nao possui a intervencao humana e desde sua concepcao
ele foi idealizado de tal forma. Assim, os nomes para cada parte do processo serao acom-

panhados da palavra "automatica”.

O seguinte fluxograma foi elaborado para facilitar o entendimento de tais defini-
¢oes, onde essas poderiam ser consideradas supérfluas ou delongadas, mas nas quais sao

necessarias para a plena construcao de um topico tao importante para o trabalho.
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Fluxo Automizado fableCount

PROCESSOS AUTOMATIZADO

:] Processos Automaticos

Distribuicdo foi
especificada?

Sim

Distribuicdo
selecionada

Selecdo automatica
de distribuicao

Ordens de pardmetros foram
especificadas?

Algoritmos de sele¢ao automatica de ordens de
parametros

Sim

[Naive—Search ] [ ARMA-Based J [ Post LASSO ]

h 4

Ordens de
parametros selecionados

Modelo Final

Elaborado pelo autor (2025)

Tal automatizacao se divide em 3 passos.

(i) Selecao da Distribuicao

- Determina a distribuicao de probabilidade a ser utilizada no modelo
(ii) Selegao das Ordens Paramétricas

- Determina as ordens autorregressivas e de médias méveis (p, ¢) do modelo utili-

zado. Certos métodos possuem a capacidade de determinagao da ordem sazonal (P, Q)
(iii) Selegao do Melhor Modelo de Previsao

- Seleciona o modelo que minimiza alguma fun¢do de custo como EQM, MAE,
MASE e outros
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No contexto de automatizagao, a construcdo de suas funcgoes deve ser realizada
de uma maneira cautelosa, na qual o trade-off de desempenho e tempo de execugao

computacional deve ser realizado com equilibrio

Algoritmos extremamente precisos exigem um alto desempenho computacional,
contrariando uma das propostas iniciais do pacote em relagao a rapida estimagao de mode-
los. Além disso, certos limites computacionais sdo observados devido a busca exacerbada
por precisao, onde a tentativa de uma ligeira melhoria na modelagem pode resultar em

varias horas adicionais de execuc¢ao computacional.

J& no outro extremo, algoritmos de execugao instantdnea muitas vezes apresentam
baixo desempenho estatistico, pulando ou deixando de lado intimeros passos fundamentais
na busca pelo melhor modelo. Tal fato tornaria intutil tais algoritmos. Todo pesquisador
gostaria de estimar rapidamente modelos para as 5568 cidades do Brasil, mas tal busca se

torna absurda e infundada ao saber que os modelos estimados sao imprecivos e erroneos

A partir do contexto apresentado, os métodos implementados no pacote buscam sa-
tisfazer ambos os lados, apresentando algoritmos otimizados que buscam um 6timo tempo
de execugao computacional, mas que para isso, nao deixem de lado a precisao necessaria
para boas anélises e previsoes. Além disso, as seguintes se¢oes buscaram descrever que o
passo a passo desse processo automatizado pode ser personalizado, assim métodos mais
precisos e mais longos ou menos precisos e mais rapidos, podem ser selecionados pelo

usuario

4.1 ALGORITMO PARA SELECAO AUTOMATICA DE DISTRIBUICAO

Ambos os modelos implementados no pacote possuem como ponto de partida a
selecao de uma distribuicdo de probabilidade adequada para os dados trabalhados. Di-
ferentemente de um modelo ARMA, que supoe normalidade, os modelos GLARMA de
Valores Inteiros e INGARCH podem utilizar as distribui¢oes Poisson e Binomial Negativa

como ja citado no capitulo 2.

A idéia inicial dos algoritmos desenvolvidos para esse passo era a de testar se
os dados trabalhados apresentavam o fenomeno de sobredispersdao, onde a variancia é

significativamente maior que a média. A partir do teste aplicado, teria-se 2 possibilidades
1. Se nao houve sobredispersao nos dados, a distribuicdo Poisson seria utilizada

2. Se houve sobredispersao nos dados, a distribuicdo Binomial Negativa seria

utilizada

Apesar de estatisticamente o fendmeno de sobredispersao significar que para uma
variavel aleatéria X, Var(X) > E(X), sendo relativamente simples testar no contexto de
testes para paramétros, no contexto de uma regressao Poisson, que ¢ o caso dos modelos
GLARMA e INGARCH tem-se que a distribui¢ao condicional dos dados segue certa distri-
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buicao de densidade de probabilidade, nao sua distribuicdo marginal. Consequentemente,
a variancia sera igual a média dentro de cada conjunto especifico de valores das variaveis,
mas nao em todas elas. Em geral, a variancia marginal serd maior que a média marginal,
mesmo quando os pressupostos da regressao de Poisson estiverem exatamente corretos
(Cameron e Trivedi 1990). Ou seja, um simples teste de F(X) = Var(z) ndo deve ser
utilizado diretamente nos dados, e sim aplicados em modelos INGARCHs e GLARMAs

ja estimados.

A partir do ponto apresentado, o desenvolvimento de tal passo apresentou suas
barreiras iniciais: Para testar sobredispersao, modelos iniciais devem ser estimados, mas
a especificacao de tais modelos no contexto de séries temporais ainda é desconhecido,
onde a determinagao dos parametros (p,q) se tornam necessarios antes da defini¢do da
distribuicdo a ser utilizada no modelo. Tal fato implica em um alto custo computacional
para a determinacado de um passo que deveria ser o mais simples e rapido dentro os

restantes.

(Weil e Schweer 2015) introduz a ideia de detecgao de sobredispersao para mode-
los INARCH(1) (Heterocededasticidade Condicional Autorregressivo), que se desenvolve
entorno da construcao da distribuicao assintotica do modelo para construcao de um teste
de hipdétese. Apesar do teste apresentar um bom poder, sua aplicacdo nos modelos IN-
GARCH e GLARMA é utépico no contexto desse trabalho, onde distribui¢oes assintéticas

para ambos os modelos teriam que ser construidas

Dado a impossibilidade do desenvolvimento de um teste apropriado de sobredisper-
sao no contexto dos modelos estudados, (Weil e Schweer 2015) descreve a boa precisao
dos critérios de informacao AIC e BIC selecionarem o modelo correto em casos assin-
toticos. Além disso, o mesmo autor cita a estrutura similar de autocorrelagdo entre o
modelo ARMA e os modelos GLARMA e INGARCH. Assim, o algoritmo desenvolvido
nesse passo se baseia na estimacgao de modelos Poisson GLARMA(p, ¢) e Binomial Ne-
gativo GLARMA(p, ¢) ou Poisson INGARCH(p, q) e Binomial Negativo INGARCH(p, q),
onde as ordens (p, q) sdo obtidas via o algoritmo do auto-arma, selecionando o modelo
que miniza certo critério de informacdo. Dessa forma, o problema de estimacao de di-
versos modelos GLARMA ou INGARCH ¢ eliminado através do algoritmo otimizado do

auto-arma

O seguinte fluxograma foi elaborado para ilustrar esse passo (o objeto "m” si-

nalizado no fluxograma, vem de "modelo” e pode assumir os valores: INGARCH ou

GLARMA)

O algoritmo auto-arma sera abordado em detalhes no proximo topico. De forma
resumida, trata-se de um método para a selecao automatica das ordens autorregressiva
(AR, representada por p) e de média mével (MA, representada por ¢) em modelos ARMA.

Para isso, utiliza-se o algoritmo de Hyndman-Khandakar, que automatiza a escolha
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Algoritmo de Selecao de Distribuicao

DADOS

/%  USUARIO ESCOLHE
-/ OMODELO BASE M

EXECUGAO DO
AUTO-ARMA

v
OBTEN(;;EG DAS ORDENS (p, q)

W

Distr de M de menor

IC

Elaborado pelo autor (2025)

dessas ordens. As ordens selecionadas sdo entdo replicadas no ajuste de modelos de
contagem (GLARMA e INGARCH)

Com a distribuicao a ser utilizada no modelo ja selecionada, o segunda passo da

modelagem automatizada ¢é disparada, onde as ordens dos parametros sao definidas

4.2  ALGORITMOS PARA BUSCA AUTOMATICA DE ORDEM DE PARAMETROS

Um obstaculo comum para muitas pessoas no uso dos modelos ARMAs para pre-
visao é que o processo de selecao de ordens de parametros geralmente é considerado
subjetivo e dificil de aplicar. (Hyndman e Khandakar 2008)

No contexto convencional de analise de séries temporais, a determinacao das or-
dens dos parametros autorregressivos e de médias moveis envolve um processo exaustivo

de investigagdo das fungoes de autocovaridncia (FAC) e autocorrelacao parcial (FACP).
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Este processo é muitas vezes caracterizado por sua natureza manual, onde o pesquisador
deve avaliar minusiosamente lags significativos e nao significativos na FAC e FACP. Em
muitos casos, esse processo também é subjetivo, pois os sinais de truncamento e decai-
mento exponencial desejaveis nas fungoes nao sao facilmente identificiveis, tornando a
interpretacao dessas caracteristicas uma tarefa passiveis de erros. Além disso, tal pro-
cedimento se mostra inviavel no contexto de grandes bases de dados, onde por exemplo
deseja-se estimar um modelo para cada cidade no Brasil. Assim, a motivacao para o
desenvolvimento de algoritmos de busca automatica de pardmetros em modelos de sé-
ries temporais é evidente diante dos desafios apresentados pelo processo convencional de

determinacao das ordens dos parametros autorregressivos e de médias moveis

O pacote fable tem como uma de suas principais caracteristicas possuir algoritmos
para selecao automatica de ordens de parametros em todos modelos disponibilizados.
Cada modelo possui seu proprio algoritmo, tendo métodos de buscas e critérios de paradas
distintos. Os mais importantes e que serviram de base para a elaboragao dos algoritmos

que serao descritos para os modelos de contagem sao aqueles disponibilizados para a classe
dos ARMAs (ARIMAs, SARIMAs, e ARMAX).

Nesse ambito, o pacote desenvolvido nesse trabalho também disponibiliza formas
automaticas de selecao de parametros. Tal tépico ainda se mostra inédito no contexto de
modelos temporais de contagem, e portanto espera-se que o trabalho desenvolvido seja

utilizado como ponto de partida para demais pesquisadores

O pacote fableCount implementa trés algoritmos distintos para a selecao auto-
maética das ordens (p,q) nos modelos de séries temporais de contagem. Cada um desses
algoritmos apresenta vantagens e limitagoes especificas, sendo concebidos para atender

diferentes perfis de usudarios e contextos analiticos. Os métodos disponiveis sao:

e Naive-Search
« ARMA-Based

e Post-Lasso

Esses algoritmos podem ser agrupados em duas categorias principais, conforme
proposto por (Hyndman e Khandakar 2008) e (Tran e Reed 2004):

1. Algoritmos Atravessadores de Espaco de Pardmetros (Parameter Space Tra-

versers Algorithms)

2. Algoritmos de Regularizagao (Regularization Algorithms)

A distingao entre essas classes se d4 pela natureza do processo de busca do modelo

ideal:
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o Algoritmos de atravessamento de espaco de pardmetros como o Naive-
Search e o ARMA-Based consistem na estimacao de multiplos modelos, cada um
com diferentes combinagdes de ordens (p, ¢). O critério de informagao (AIC ou BIC)

é utilizado para identificar o modelo mais adequado entre os candidatos estimados.

o Algoritmos de regularizagao, por outro lado, baseiam-se na aplicagdo de pena-
lizagoes do tipo L; (como no método LASSO), promovendo a selegao automatica
das defasagens mais relevantes dentro de um modelo tinico de ordem maxima pré-
definida. A estrutura final do modelo é entao derivada a partir dos coeficientes

distintos de zero, seguido de uma reestimagao nao penalizada (Post-LASSO).

Os topicos subsequentes descrevem em detalhe o funcionamento e as particulari-

dades de cada um dos métodos apresentados.

4.2.1 METODO NAIVE-SEARCH

O método Naive-Search (em portugués, Busca Ingénua) considera uma matriz de
busca 4x4, onde as linhas dessa matriz representam a ordem autorregresiva e as colunas
representam a ordem de médias méveis. Todos os modelos de combinagoes (p, ¢) indo de
0 a 3 sao estimados, e seus valores de AIC, ou BIC sdo armazenados nessa matriz. Ao
final do algoritmo, a busca-se os indices dessa matriz que apresentam o menor valor do

critério de informacao utilizado.

De maneira detalhada, primeiramente o algoritmo define uma matriz 4x4, chamada
de matriz de busca. O primeiro objetivo dessa matriz ¢ indicar os indices dos modelos que
devem ser estimados, onde suas linhas representam a ordem autorregresiva e as colunas
representam a ordem de médias moéveis, indo de 0 a 3 tanto em linhas tanto em colunas.
Dessa forma, todas as combinagbes de modelos (p,q) para 0 a 3 sdo estimadas. Tal
limite superior para as ordens dos parametros foi definido por conta das condi¢oes de
estacionariedade e invertibilidade dos modelos, onde essas sao necessaria para a producao
de previsoes. A seguinte imagem foi criada exemplifica o primeiro passo do algoritmo,

onde a matriz de busca é inicializada

No segundo passo desse algoritmo, cada elemento dessa matriz passa a conter
um modelo armazenado, onde por exemplo o elemento 1x1 armazenard um modelo IN-
GARCH(0,0). O critério de informagao definido pelo usuario, AIC OU BIC, sao calculados
para todos os modelos, onde esses valores sao armazenados no lugar do modelo estimado,
dessa forma a matriz de busca nao possui mais o modelo em si, mas s6 o valor de crité-
rio informacao. Essa decisao foi tomada por desempenho computacional, onde manipular
uma matriz com valores numéricos é mais simples do que manipular uma matriz contendo

objetos-modelos
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Matriz de Busca no Passo 1 no Método Naive-Search
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Elaborado pelo autor (2025)

Matriz de Busca no Passo 2 no Método Naive-Search
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Elaborado pelo autor (2025)

No terceiro passo do algoritmo, os indices que apresentam o menor valor de critério

de informagao sao obtidos e assim o modelo com menor AIC ou BIC é retornado

Na imagem a seguir, definiu-se um exemplo onde um modelo com (p, q) igual (1, 2)

foi aquele a apresentar menor critério de informacao

Resumidamente, o método é dividido nos seguintes passos

1. Estimam-se todos os modelos correspondentes as combinagoes de ordens (p, ¢) com

p,q € {0,1,2,3} e tais modelos sdo armazenados na matriz de busca

2. Calcula-se, para cada modelo estimado, o critério de informacao especificado pelo
usudrio (AIC ou BIC)
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Matriz de Busca no Passo 3 no Método Naive-Search
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Elaborado pelo autor (2025)

3. Retorna-se o modelo associado ao menor valor do critério de informacao adotado,

sendo este considerado o mais adequado dentre os avaliados.

O algoritmo possui esse nome por estimar todos os modelos do espago paramétrico
definido, nao utilizando um caminho 6timo de busca como o método Stepwise. Apesar
de ser um método com maior tempo de execucao, ele sempre ird retornar o modelo de
menor critério de informacgao. Esse método ainda nao possui capacidade para busca de
ordens sazonais. Tais caracteristicas sao as principais diferencas em relagao ao préximo

algoritmo apresentado

4.2.2 METODO ARMA-BASED

O algoritmo A RMA-Based baseia-se no algoritmo de busca proposto por (Hyndman e Khandal
para selecdo automatica de parametros para modelos ARMA. Diferente do algoritmo
Naive-Search, Hyndman-Khandakar utilizam um método Stepwise para percorrer o espaco
paramétrico, sendo chamado de ”A Stepwise procedure for traversing the model space”. E
importante destacar que tal método tem suporte para selecao de ordem de parametros

sazonais. Ele possui os seguintes passos

o Passo 0: Um teste de Canova-Hansen é aplicado para verificar a presenca de sazo-

nalidade estavel na série temporal.

« Bifurcacao do processo: Com base no resultado do teste:
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— Se nao houver sazonalidade, o processo segue a selecdo de modelos nao

sazonais.

— Se houver sazonalidade, adota-se a estratégia de selegdo de modelos sazo-

nais.

Para séries nao sazonais:

o Passo 1: Define-se um conjunto inicial de cinco modelos candidatos:

— ARMA(0,0
— ARMA(1,0
— ARMA(

(

com e sem constante
com constante
— ARMA

2

)

)
0,1) com constante
2,2) com constante

?

« Passo 2: Calcula-se o critério de informacao (AIC ou BIC) para os modelos defini-

dos. O modelo com menor valor é armazenado.

« Passo 3: Realizam-se variages incrementais e decrementais de 1 nas ordens (p, q)
do modelo selecionado, além da inclusdo ou remocao da constante. O novo modelo
é comparado com o anterior. Os passos 2 e 3 sao repetidos até que nao haja mais

reducao no critério de informacao.
Para séries sazonais:

o A légica é a mesma da sele¢do nao sazonal, mas considera-se a estrutura SARMA.

Os modelos iniciais incluem:

— SARMA(0,0)(0,0),,
— SARMA(1,0)(0,0),,,
— SARMA(0,1)(0,0),,
— ARMA(2,2) com constante
— ARMA(0,0) sem constante
o A partir do melhor modelo inicial, aplicam-se novamente variagoes nas ordens e

constantes, com repeticao iterativa dos passos até que novo modelo nao apresente

um critério de informacao inferior ao modelo atualmente em consideracao.

A seguinte imagem foi elaborada por Hyndman para ilustrar o processo
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Método Stepwise de Hyndman-Khandakar
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Elaborado pelo autor (2025)

No escopo dos modelos de contagem e da implementacao de estratégias automati-
zadas para selecao de parametros, adota-se o algoritmo de Hyndman e Khandakar como
referencial para a determinacdo das ordens étimas (p,q). Tal escolha é respaldada por
(Weifl e Schweer 2015), o qual demonstra que modelos de contagem como GLARMA e
INGARCH compartilham estruturas de autocorrelacao similares aquelas observadas em
modelos ARMA. Nesse sentido, a utilizacdo das ordens identificadas a partir de um mo-
delo ARMA convencional como ponto inicial para a modelagem de séries de contagem

apresenta altas chances de obter um bom desempenho

4.2.3 METODO VIA Post-LASSO

O método LASSO (Least Absolute Shrinkage and Selection Operator) foi proposto
por Robert Tibshirani em 1996, com o objetivo de melhorar a interpretacao e o desem-
penho de modelos de regressao quando hd um grande nimero de varidveis explicativas.
O LASSO se destaca por sua capacidade de realizar selecao de varidveis e regularizacao
simultaneamente, tornando-se especialmente 1util em cenarios com alta dimensionalidade

ou quando se deseja evitar o sobreajuste do modelo.

Em modelos lineares classicos, como a regressao linear multipla, a estimacao dos
coeficientes é feita por minimos quadrados ordinérios (OLS). Embora eficiente sob certas
condicoes, o OLS tende a apresentar instabilidade quando o niimero de variaveis é grande
ou quando existe multicolinearidade entre os regressores. O LASSO surge como uma
alternativa que introduz uma penalizacao na funcao de custo, incentivando solu¢des mais

parcimoniosas, ou seja, selecionando apenas variaveis relevantes

Formulacgao Estatistica
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Considere um modelo de regressao linear com vetor de resposta y € R”, e o vetor
de coeficientes § € RP. A estimagao pelo método LASSO é dado por meio do seguinte

problema de otimizagao

5= argmin {1y~ XI3 + A8l } (@.1)

onde |||, denota a norma Euclidiana e ||-||; denota a norma [; definida como
181l = X%-118;]- O pardmetro de regularizacio A > 0 controla o grau de penalizagao:
quanto maior A, maior o encolhimento dos coeficientes, podendo forcar alguns deles a zero

o que efetivamente realiza a selecao de variaveis.

Embora o LASSO tenha sido inicialmente desenvolvido para modelos de regressao
linear, sua aplicacao foi posteriormente estendida para contextos mais complexos, in-
cluindo modelos autoregressivos e séries temporais de contagem. Nesses casos, o LASSO
pode ser utilizado para selecionar automaticamente os defasagens mais relevantes dos re-
gressores e da propria série, o que é particularmente ttil quando se trabalha com modelos
como INGARCH ou GLARMA, onde a estrutura de defasagens pode ser extensa.

Além do LASSO tradicional, outras variantes foram desenvolvidas para aprimorar
ainda mais a selecdo de variaveis e lidar com limitagoes do método original. O Adap-
tive LASSO (AdaLLASSO), proposto por (Zou 2006), introduz pesos adaptativos na pe-
nalizagao [y, permitindo que varidaveis com maior relevancia inicial recebam penalizag¢oes
menores. Essa abordagem melhora a consisténcia na selecao de variaveis, sendo 1util em
contextos onde se deseja recuperar a estrutura verdadeira do modelo, especialmente em
séries temporais com defasagens longas. Mais recentemente, o Weighted Lag Adaptive
LASSO (WLadaLASSO) foi proposto para cendrios especificos de séries temporais, in-
corporando pesos distintos para diferentes defasagens e adotando fungoes perda robustas
como a LAD (Least Absolute Deviations). Essa metodologia mostrou-se particularmente

eficaz na presenca de sobredispersao e heterocedasticidade.

Contudo, neste trabalho optamos por adotar o enfoque do Post-LASSO, dada
a natureza do problema em questao: nosso principal objetivo é selecionar automatica-
mente as defasagens mais relevantes dos termos autoregressivos (AR) e de média médvel
(MA), sem a necessidade de reestimar os coeficientes a partir da estrutura penalizada do
LASSO. Assim, utilizamos o LASSO como ferramenta de triagem de variaveis e, uma vez
selecionadas as defasagens, reestimamos os parametros por métodos tradicionais, como
o estimador de maximo verossimilhanca, respeitando a estrutura probabilistica do mo-
delo de contagem escolhido. Essa abordagem se mostrou adequada para o nosso objetivo
de analise estrutural e interpretabilidade do modelo, mantendo o viés de estimacao sob

controle ao empregar estimadores nao penalizados na etapa final.

A abordagem Post-LASSO consiste em um procedimento de duas etapas: selecao

de defasagens relevantes por meio da penalizacdo LASSO e reestimacao de um modelo
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final com apenas as variaveis selecionadas. A seguir, descrevem-se as etapas da estratégia:

1. Inicializagao - Inicialmente, é necessario definir um conjunto inicial de defasa-
gens autorregressivas e de médias moveis. Para isso, ajusta-se um modelo INGARCH ou

GLARMA preliminar, com ordens maximas (py, o), sendo:

» Defasagens autorregressivas: yi—1, Ye—2, --s Yt—po

e Defasagens de médias méveis: e€;_1, €9, ..., €1_¢,

Essas defasagens serdo utilizadas como varidveis explicativas no modelo LASSO

2. Estimacao via LASSO - Nesta etapa, ajusta-se um modelo de regressao
penalizada LASSO, onde a variavel resposta é a prépria série temporal y;, e as varidveis
explicativas sao as defasagens selecionadas anteriormente. O modelo ajustado tem a

seguinte forma:

po q0
Y= Bo+ Y Bi—i + > vje—j + & (4.2)
=1

Jj=1
com a penalizacao [; aplicada aos coeficientes (; e ;, que promove a selecao auto-

matica de variaveis relevantes, defasagens com coeficientes iguais a zero sao descartadas

3. Selecao final e reestimacao (Post-LASSO) - Apés a etapa de penalizacao,
extrai-se o ultimo coeficiente ndo nulo estimado pelo LASSO para os termos AR e MA.

Assim, definem-se as ordens finais do modelo como:

« p=max{i:f; #0}

o §=max{i: % #0}

Com os valores de p e ¢ selecionados, reestima-se o modelo de séries temporais
(por exemplo, INGARCH ou GLARMA), utilizando o método usual de estimagao para

cada um dos modelos, utilizando apenas as defasagens retidas pelo LASSO.

4.2.4 COMENTARIOS SOBRE OS METODOS

Diferentemente dos métodos Naive-Search e ARMA-based, que se baseiam na esti-
macao de diversos modelos e na selecao daquele que minimiza um critério de informacao,
como o AIC ou o BIC, o método baseado em LASSO estima apenas um modelo final.
Apesar dessa vantagem de simplicidade, trata-se de uma abordagem que pode apresentar
maior instabilidade computacional, uma vez que depende de métodos numéricos sujeitos

a nao convergéncia e da escolha adequada do parametro de penalizagao A

Cada método possui seus respectivos pontos fortes e limitacoes, sendo a escolha do

mais adequado determinada pelas caracteristicas dos dados e pelos objetivos do estudo.
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A Tabela 1 apresenta uma comparagao entre os métodos implementados neste

trabalho e pode servir como um guia de referéncia rapida para a escolha da abordagem

mais apropriada.

Tabela 1 — Comparagao entre os métodos de selegdo de ordens (p, q)

Critério Naive-Search ARMA-Based Post-LASSO

Tipo de busca Exaustiva Stepwise guiada Regularizacao
(L1)

Espaco explorado Completo (ex.: | Parcial, guiado | Parcial, definido

p,q < 3) por heuristica por penalizacao

Custo computacional Alto Baixo Moderado

Estabilidade da estimacao | Alta Alta Moderada

Suporte a sazonalidade Nao Sim Niao

Reestimativa final

Nao necessaria

Nao necessaria

Sim (pds-selegao)

Objetivo principal Precisdo na esco- | Eficiéncia com | Selecdo parcimoni-
lha global boa precisao osa e adaptativa
Dependéncia de tuning Nao Parcial (critérios) | Alta (valor de \)

Recomendado para

Séries curtas

Séries sazonais e
modelagem explo-

Séries longas ou
alta dimensionali-

dade

ratéria

4.3 ALGORITMO PARA BUSCA DE MELHOR PREVISAO

Uma questao recorrente na area de estatistica e aprendizado de méaquina é a di-
ferenciagdo de modelos com foco em inferéncia daqueles com foco em predigao/previsao.
Enquanto a primeira classe busca a construgao de modelos parsimoniosos, buscando a
interpretacao das variaveis explicativas utilizadas, onde os critérios de informacao sao fer-
ramentos importantissimas nesse contexto, a segunda classe de modelos busca exaustival-
mente o modelo de menor erro de predigao/previsao, deixando em segundo plano questoes
como um elevado niimero de covariavies e baixo poder de interpretagdo. Deve-se destacar
que no contexto de séries temporais, ¢ mais adequado a utilizacao do termo”previsao” em
relacdo ao termo "predi¢ao”, onde esse tem como significado: a antecipagdo de algo, a

construcao daquilo que ainda nao aconteceu

Como ja destacado, os critérios AIC e BIC sao essenciais para a primeira classe,
pois esses se baseiam em uma funcao da verossimilhanca penalizada pelo nimero de
parametros. Tais critérios ja foram definidos e utilizados em se¢oes anteriores. No outro
extremo, para modelos com foco em previsdo, outras métricas sdo utilizadas, onde essas

utilizam como ponto inicial o erro do modelo estimado.

Um erro de previsao é a diferenca entre o valor observado e o valor previsto, e

pode ser escrito como

€t+h = Yt+h — @t+h|t (4-3)
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A analise em cima do erro de previsao por si s6 nao fornece informagoes suficientes
sobre a distribuicao e a natureza dos erros. Ao utilizar diferentes métricas, é possivel obter
uma visdo mais abrangente e detalhada do desempenho do modelo, identificando areas
especificas que necessitam de melhorias e permitindo a escolha da métrica mais adequada
para o contexto especifico da aplicacdo. E nesse cendrio que diversos tipos métricas sao
utilizadas, onde essas estao disponiveis no pacote, tais métricas também sao chamadas de

"métricas de avaliagdo” (evaluation metrics)

4.3.1 METRICAS DE AVALIACAO

Diferentes métricas sao utilizadas em diferentes cenarios. Desde métricas livres de
escala, a métricas que buscam penalizar maiores erros, o pacote desenvolvido nesse traba-
lho buscou disponilizar a maior gama possivel para que o usuario pudesse personalizar a

escolha do melhor modelo da maneira que o agradasse.

A primeira classe de métricas sao as mais simples, e chamadas de Erros Depen-
dentes de Escala. Essas métricas utilizam a mesma escala que os dados trabalhados, e

portanto nao podem ser utilizadas para comparar séries que possuam diferentes escalas

E importante destacar que no pacote tais métricas sao chamadas em ingles.

MAE - Mean Absolute Error = média(|e|) (4.4)

RMSE - Root Mean Squared Error = y/média(e?) (4.5)

Enquanto o MAE possui uma interpretacao mais direta e simples, o RMSE busca
penalizar modelos que possuem erros de maiores magnitudes. Ambas métricas sdo popu-

larmente utilizadas e possuem pouca diferenca em tempo de execugao computacional

A segunda classe de métricas nao dependem da escala dos dados e sdo chamados

de Erros percentuais. Usualmente, se baseiam no valor de p;, onde p; = %, e sao
utilizados para comparacgao de séries com diferentes unidades
A métrica mais usual é dada por
MAPE - Mean Absolute Percentage Error = média(|p;|) (4.6)

Por sua definicao, o MAPE possui a desvantagem de atribuir um peso maior a erros
negativos do que positivos, tornando-se uma métrica assimétrica. Buscando contornar tal

caracteristica, (Genetski 1978) propos a métrica MAPE Simétrico, dado por

200‘3/15 — ﬁt‘

sMAPE(Symmetric MAPE) = média( W £ 50
Yt T Yt

(4.7)
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Apesar de ambas as métricas apresentarem vantagens para comparagoes de séries
de diferentes unidades, ambas apresentam valores indefinidos ou tendendo ao infinito para
y; proximos a 0, caso comum para dados de contagem. Além disso, o SMAPE pode ter
valores negativos, e portanto em certos casos nao pode ser considerado uma verdadeira

métrica de Erros percentuais absolutos

A terceira e 1ltima classe de métricas disponibilizadas sao os chamados Erros Di-
mensionados. Sendo propostos por (Hyndman e Koehler 2006) tal classe é uma alterna-
tiva ao Erros Percentuais, podendo ser utilizada para comparar a precisao de modelos em
séries com diferentes unidades. O intuito geral do método é dimensionar o erro baseado

no MAE de treinamento do modelo.
Para séries nao sazonais, o erro dimensionado é definido por
€j

g = (4.8)
’ ﬁ Zthz Yt — Y1

Ja para séries sazonais, tem-se que

€

T st Yt — Vi

q = (4.9)

onde m indica o indice sazonal da série

A partir da definicao de g;, as métricas da classe Erros Dependentes de Escala

sao construidas novamente

MASE - Mean Absolute Scaled Error = média(|g;|) (4.10)

RMSSE - Root Mean Squared Scaled Error = \/média(q?) (4.11)

4.3.2 METODOS DE AVALIACAO DE DESEMPENHO PREDITIVO DE SERIES
TEMPORAIS

Para a avaliagao do erro de um modelo, é necessario que esse seja calculado a partir
de um conjunto de dados que nao tenha sido utilizado em sua estimacgao. Nesse contexto,
a técnica mais conhecida é de divisao do conjunto de dados disponivel em 2 partigoes:
treino e teste. Enquanto a primeira é utilizada para estimagao dos parametros do
modelo, a segunda tem o objetivo testar sua precisao e acuracia. Na area de regressao e
aprendizado de méaquina, a técnica mais simples se baseia na divisao de 75% dos dados
para a base de treino e 25% para a base teste, onde uma amostra aleatdria simples é

realizada para essa particao.

Para séries temporais, uma simples amostra aleatoria simples nao pode ser utili-

zada por conta da correlagao temporal dos dados. Para contornar esse problema, utiliza-se
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a técnica chamada Fora da Amostra (Out-of-Sample, OOS). Nessa abordagem, define-se
uma data de corte na série temporal; todos os valores anteriores a essa data sao utilizados
para o treinamento do modelo, enquanto todos os valores posteriores sao usados para teste.
Dessa forma, preserva-se a estrutura temporal dos dados, garantindo uma avaliagdo mais

realista do desempenho do modelo em situagoes futuras.

Método OOS para Avaliacao de Modelos Temporais

CORTE
TEMPORAL
TREINO TESTE

Elaborado pelo autor (2025)

Essa abordagem tem os beneficios de possuir um rapido tempo de execuc¢ao com-
putacional e apresentar um bom desempenho de como o modelo construido é capaz de
generalizar em dados futuros. Apesar disso, tal técnica tem como principal desvantagem
a perda de observagoes para o treinamento do modelo, no qual uma vez que os dados sao

divididos, a parte de teste se torna oculta na secao de treinamento.

Buscando contornar esse problema, uma abordagem cada vez mais utilizada em
aprendizado de méaquina é o chamado K-folds Cross Validation onde o conjunto de
dados ¢é divido em k subconjuntos, onde executa-se k iteragoes, na qual ao final da execugao

do algoritmo, todos os dados sao utilizados para o treino e para o teste do modelo.

Novamente para séries temporais, a aplicacao de tal abordagem se mostra um
pouco diferente por conta da correlacdo temporal entre os dados. Assim um método
mais robusto quando comparado ao OSS é o chamado Time Series Cross Validation
ou Evaluation on a Rolling Forecasting Origin. Essa técnica se baseia na criacao

sucessivos OOS, onde cada novo OOS, ha um aumento dos dados de treino
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Método Time Series Cross Validation

000|0000000

0000 |@e00000
000000 |@000

0000000 @00
b

O @® O

TREINO TESTE INATIVO

Elaborado pelo autor (2025)

Tais defini¢bes sao importantissimas para o entendimento do tépico, onde tais

técnicas sao utilizadas para o calculo das métricas de erro dos modelos construidos

4.3.3 BUSCANDO E AVALIANDO O MELHOR MODELO

Diferentemente das etapas de busca de melhor distribuicao e de melhores ordens
de parametros que utilizam algum critério de informacao para retornar o modelo final, a
defini¢cdo do melhor modelo de previsao se define em sua maior parte na busca do modelo

a apresentar menores métricas de avaliagao

Para facilitar a escrita e tornar a leitura do topico mais fluida, utilizaremos a
abreviaggo ABMMP - (Algoritmo de Busca de Melhor Modelo de Previsao).

O algoritmo desenvolvido buscou ponderar da melhor forma o trade-off de preci-
sao e desempenho computacional. E importante destacar que os métodos que calculam as
métricas de avaliagao, seja um simples OSS ou um Time Series Cross Validation, deman-
dam um maior tempo de execugdo computacional que um calculo de AIC ou BIC. Assim,
a idéia base do algoritmo ¢é filtrar alguns dos principais modelo a partir de algum critério
de informagao fornecido pelo usuario, calcular suas métricas de avaliagao e retornar o

modelo que minimiza tais valores.

O ABMMP é externo aos demais passos ja descritos, ou seja, os passos de busca
de distribui¢do e ordem de pardmetros conversam entre si obrigatoriamente (dado que o
usudrio nao tenha especificado nenhum desses 2 pontos), porém o passo descrito no tépico

atual utiliza uma estratégia diferente das demais

Dado que os algoritmos descritos anteriormente sempre retornavam um modelo ao
final de sua execugao, se o ciclo continuasse nesse ultimo passo, ele nao realizaria uma

busca verdadeira, mas apenas calcularia as métricas de avaliagdo do modelo retornado no
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passo 2. Assim, o ABMMP utiliza algoritmos semelhantes aos vistos nos passos 1 e 2,

porém com modificagoes especificas desenvolvidas para satisfazer a parte de busca.
Para chamar o ABMMP, o usuario deve especificar 3 argumentos:

(i) Método de Busca de Ordem de Parametros. - Deve-se escolher entre Naive-

Search-Forecast ou Tri-EVAL. Ambos os métodos serao detalhados na préxima secao

(7i) Método de Célculo da Métrica de Avaliacao - Deve-se escolher entre os métodos

OSS ou Time Series Cross Validation

(7ii) Métrica de Avaliagdo que deve ser Minimizada - Deve-se escolher apenas 1

métrica dentre as definidas na subsecao 4.3.1.

4.8.3.1 BUSCA DE ORDEM DE PARAMETROS

Os métodos aqui apresentados sdo apenas modificacoes daqueles ja descritos na
segao 4.2 (Algoritmos para busca automdtica de ordem de parametros). As modificagdes

encontram-se principalmente na parte final do algoritmo.

E fundamental destacar que os modelos que apresentam os menores critérios de
informacao, como AIC ou BIC, nao sdo necessariamente aqueles com as melhores métri-
cas de avaliacao de previsao. No entanto, esses modelos geralmente estao proximos dos
modelos 6timos para previsao. Em outras palavras, embora os modelos que minimizam o
AIC ou BIC nao sejam sempre os melhores para previsao, a probabilidade de se encontrar
o modelo 6timo é maior na vizinhanca desses modelos. Portanto, a base dos algoritmos
descritos nesta secao é utilizar algum método de selecao automatica de ordens de parame-
tros, conforme apresentado na se¢ao 4.2, para selecionar um modelo inicial. Em seguida,
testamos os modelos vizinhos para identificar aqueles que apresentam melhores métricas

de avaliagao.

4.3.3.1.1 NAIVE-SEARCH-FORECAST

O método Naive-Search-Forecast possui como idéia principal utilizar o algoritmo
Naive-Search para buscar o modelo que apresenta uma melhor métrica de avaliacao, dife-

rente do método usual, que busca o modelo com o menor valor de AIC e BIC

A ideia central consiste em ranquear os modelos com base em um critério de
informagao, de forma que o modelo melhor posicionado seja considerado como ponto de
partida. A partir desse ranking, realiza-se uma comparacao sequencial: o modelo na
posicao 7 é comparado com o modelo na posi¢ao i+ 1. O processo ¢ interrompido quando
o modelo na posigao i apresenta uma métrica de avaliacdo inferior (melhor desempenho)

em relacao ao modelo ¢ + 1, adotando-se esse ponto como critério de parada.

O algoritmo pode ser dividido nos seguintes passos
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1. Execugao do Naive-Search (até o passo 2) - O algoritmo inicia com a execucao do
método Naive-Search, limitado até a etapa de calculo dos critérios de informagao (AIC ou
BIC) para cada modelo gerado na matriz de busca. Nesse estdgio, ndo hé ainda avaliagao
preditiva, apenas a estimativa dos modelos e a quantificacao de sua complexidade e ajuste

via critérios classicos.

2. Rankeamento dos modelos - Com os valores de AIC ou BIC calculados, os
modelos sao ordenados de forma crescente ou seja, do menor para o maior valor do critério
de informacao. Essa ordenacao define a prioridade de comparacao entre os modelos, sendo

o modelo com menor AIC/BIC considerado o mais promissor inicialmente.

3. Comparacao sequencial com base em métrica preditiva - Inicia-se a avaliacao
sequencial dos modelos rankeados. Compara-se a métrica de desempenho preditivo (por
exemplo, RMSE ou MAPE) entre o primeiro e o segundo modelo do ranking. Caso o
primeiro modelo apresente desempenho superior, o algoritmo ¢ encerrado, adotando-o
como modelo final. Caso contrario, a comparacao prossegue entre o segundo e o terceiro
modelo, repetindo o processo até que um modelo apresente desempenho melhor que seu

sucessor direto. Esse ponto define o critério de parada do algoritmo.

4.3.3.1.2 Tri-EVAL

Executa os 3 métodos de busca automatica de ordem de parametros Naive-Search,
ARMA-Based e Post-LASSO e retorno aquele modelo que possui a combinagao de ordens

P e Q que apresenta a menor métrica de avaliagdo (melhor desempenho)
O algoritmo pode ser dividido nos seguintes passos

1. Execucao dos métodos de busca automatica de ordem de parametros - Executa
os 3 métodos (Naive-Search, ARMA-Based e Post-LASSO), onde cada método retorna

um modelo final

2. Comparacgao entre modelos - Compara-se a métrica de desempenho preditivo
(por exemplo, RMSE ou MAPE) entre os 3 modelos obtidos no passo 1. O modelo que

apresentar o melhor desempenho é aquele retornado pela fungao
Esse passo ainda possui certas limitagoes como.

(i) O modelo nao pode conter covaridveis, mesmo que essas possuirem valor em

um tempo futuro, tornando teoricamente previsdes possiveis

(i) A construgdo de previsoes maiores que 1 passo a frente para o modelo IN-
GARCH utiliza o método de bootstrap paramétrico, técnica essa que introduz certo nivel
de viés e variancia quando o método de Times Series Cross Validation é utilizado para

calculo das métricas de avaliagao
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5 APLICACAO E RESULTADOS

Esta secao tem por finalidade aplicar os modelos de contagem desenvolvidos a um
conjunto de dados reais, de modo a avaliar sua capacidade preditiva e computacional em
comparacao ao modelo ARIMA e NNETAR. Para essa analise, foram utilizados dados da
pandemia de COVID-19 no Brasil, disponibilizados pelo DATASUS, consistindo em séries

temporais semanais do nimero de casos e 6bitos confirmados.

Além da comparacao entre classes de modelos, foi analisado a efetividade dos
procedimentos automaticos de selecao da ordem autorregresiva e de médias moveis dos
modelos de contagem, com o objetivo de verificar se tais estratégias produzem resultados

competitivos ou mesmo superiores aos obtidos pelo ARIMA tradicional e pelo NNETAR.

Como enfatizado na introducao, os principais desafios desse tipo de modelagem
residem na adequada representacao de séries de baixa magnitude (com valores frequente-

mente préximos de zero) e na eficiéncia computacional durante a estimagao e previsao.

5.1 DADOS UTILIZADOS

Para a presente aplicacao, foram utilizados dados sobre a COVID-19 disponibili-
zados pelo DATASUS, portal oficial do governo federal.

A base contém informacoes de todos os municipios brasileiros, abrangendo o pe-
riodo de 2020 a 2025, com atualizacao diaria. Considerando a necessidade de maior
controle sobre o escopo da analise e buscando adequar o estudo ao contexto geografico e
temporal de interesse, optou-se por aplicar um filtro, selecionando apenas municipios do

estado de Minas Gerais, referentes ao ano de 2024.

O estudo teve como objetivo modelar tanto os casos confirmados de COVID-19
quanto os 6bitos registrados. Para isso, foram selecionados 39 municipios mineiros para
compor o conjunto de dados de casos confirmados e 35 municipios para o conjunto de
dados de o6bitos.

Para a selecao desses municipios, realizamos uma amostragem estratificada a partir
dos 853 municipios de Minas Gerias, com base no nimero total de casos confirmados e

6bitos ao longo do ano. Foram definidos trés estratos para cada variavel.

Os estratos foram definidos a partir de uma analise exploratéria dos dados originais,

resultando na seguinte classificagao:
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Tabela 2 — Estratificacdo das variaveis de casos confirmados e ébitos

Tipo de variavel Categoria do estrato Valor minimo Valor maximo

Casos confirmados Baixo 10 100
Casos confirmados Médio 100 250
Casos confirmados Alto 250 —
Obitos Baixissimo 1 4

Obitos Baixo 5 9

Obitos Médio 10 20
Obitos Alto 20 —

Dessa forma, foi possivel identificar em quais contextos os modelos apresentaram

melhor desempenho, possibilitando uma comparacgao mais equilibrada entre eles.

A base final utilizada para o treinamento passou por um ajuste no indice tempo-
ral das séries. Na base original, as observagoes eram registradas diariamente; contudo,
considerando que os dados diarios podem apresentar inconsisténcias e incoeréncias devido
a atrasos ou atualizagoes no sistema por parte do governo, optou-se por agrega-los por
semana epidemiologica. Com isso, cada municipio passou a ter 52 observagoes anuais no

conjunto de dados empregado para a modelagem.

A etapa de treinamento consistiu na definicao e estimagao dos modelos a serem
comparados. Foram consideradas duas classes principais: (1) os modelos atualmente
empregados na plataforma, representados por ARMA e NNETAR; e (2) os modelos de
contagem desenvolvidos neste trabalho, representados por GLARMA e INGARCH.

O objetivo dessa etapa foi garantir uma base de comparagao justa entre os mo-
delos classicos e as novas implementagoes voltadas para séries temporais de contagem,
permitindo avaliar tanto o desempenho preditivo quanto os aspectos computacionais de

cada abordagem.

O modelo ARMA foi ajustado por meio do procedimento stepwise de selegao auto-

matica de ordens, conhecido como método de HyndmanKhandakar (Hyndman e Khandakar 2008).

O modelo NNETAR foi estimado com base nas rotinas automatizadas de selecao
de arquitetura e ordens disponiveis na funcao nnetar() do pacote fable. Essa funcao
implementa uma rede neural autoregressiva. O processo inclui a escolha automatica do
niumero de defasagens e neur6nios na camada oculta, conforme a metodologia proposta

por (author?) (Hyndman e Athanasopoulos 2021).

Para o modelo GLARMA, foram definidos os métodos Naive-Search e ARMA-
Based

De forma analoga, o modelo INGARCH foi estimado em trés variagoes, Naive-
Search, ARMA-Based e Naive-Search e Post-LASSO

A combinacao desses diferentes métodos permitiu comparar nao apenas o desem-
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penho preditivo dos modelos de contagem, mas também a eficiéncia e robustez de cada

estratégia de selecao de parametros, em um contexto de ajuste em larga escala.

Tanto para conjunto de dados de casos confirmados e 6bitos, os modelos foram
treinados e avaliados de duas maneiras distintas, com o objetivo de comparar desempenho

em diferentes horizontes de previsao:

1. Validacao temporal (time-series cross-validation) este procedimento de va-
lidagdo com origem moével (rolling-origin) foi utilizado para avaliar a acurdcia dos
modelos em previsoes de um passo d frente (horizonte minimo). Essa abordagem
permite medir o desempenho em condigoes de predi¢ao curta e verificar estabilidade

das previsoes ao longo do tempo.

2. Avaliagdo out-of-sample (OOS) aqui os modelos foram treinados em um con-
junto de treino fixo e avaliados em um conjunto fora da amostra para previsdes
de quatro passos a frente. No contexto deste estudo, em que a unidade temporal
sao semanas epidemiologicas, um horizonte de quatro passos corresponde a um més

completo, sendo considerado um horizonte de previsao relativamente longo.

Ambas as estratégias foram adotadas para investigar se a acuracia relativa dos
modelos depende do horizonte de previsao. A métrica principal utilizada para comparacao
é¢ o RMSE

5.2 HIPOTESES

Para orientar a analise empirica e garantir que os resultados obtidos nao se disper-
sassem em observagoes fragmentadas ou interpretacdes meramente descritivas, optou-se
por estabelecer previamente um conjunto de hipoteses a serem investigadas. A defini-
¢ao dessas hipoteses fornece um caminho estruturado para a andlise, permitindo que a
investigacao se desenvolva de forma organizada e consistente, em vez de ficar a mercé de
achados isolados ou desconexos. Com isso, busca-se otimizar a investigagdao, tornando-a
mais clara, eficiente e replicavel, além de possibilitar uma interpretacao dos resultados

dentro de um quadro analitico coerente.

O presente trabalho adota uma abordagem exploratéria e comparativa para avali-
acao das hipdteses, sem recorrer a testes estatisticos formais de significancia. As andlises
foram conduzidas de forma descritiva, tendo o RMSE como métrica principal para men-
surar a acuracia dos modelos. A verificagdo das hipoteses foi realizada por meio da
comparagao direta dos resultados obtidos, buscando identificar padroes de desempenho
nos diferentes estratos de séries temporais, no tempo de execucao e nas caracteristicas es-
pecificas das previsoes, com énfase na interpretagao pratica e no comportamento relativo

entre as abordagens.
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Com base nos dados e modelos definidos, foram formuladas hipoteses fundamenta-
das tanto na experiéncia empirica de utilizagdo dos modelos ARIMA e NNETAR quanto
no objetivo de desenvolver e avaliar modelos de contagem. Cada hipétese descreve um ce-
nario esperado de desempenho ou caracteristica dos modelos, sendo avaliada a partir dos

valores de RMSE obtidos nas previsdes e de observagoes qualitativas sobre os resultados.

A seguir, temos as hipoteses desenvolvidas, assim como a técnica utilizada para

analisar essas hipoteses.

1. Modelos de contagem apresentam um erro menor para estratos ”Bai-
x0s” e ”Baixissimo” Como descrito durante boa parte do trabalho, a construcao dos
modelos de contagem foram motivados pela necessidade da melhoria do desempenho em
dados com valores proximos a 0 e assim é necessario analisar esse comportamento. A ava-
liacao é dada calculando-se o RMSE médio dos modelos para todas as séries pertencentes
ao estrato de baixa contagem. Os valores serao comparados entre modelos de contagem
e modelos classicos (ARIMA e NNETAR) para verificar qual grupo apresenta melhor

desempenho nesse cenario.

2. Modelos de contagem exigem menor tempo de treinamento do que
NNETAR (por série), tornando-os mais escalidveis para muitos municipios. O
tempo de execucgao para ajuste de cada modelo sera registrado individualmente por série.
A comparagao serd feita analisando-se o tempo médio por estrato de municipio, analisando
de maneira apartada os tempos de treinamento e previsao de cada modelo. Esperamos
que os modelos de contagem tenham um tempo total de execucao menor que o modelo

NNETAR

As hipéteses embasam a premissa do trabalho, encontrar modelos que sejam tao
rapidos de execugao quanto um ARMA, mas que tenham a precisao e interpretabilidade
dos resultados de um NNETAR

5.3 RESULTADOS

Apo6s treinarmos os modelos utilizando o método de cross validation e via out of
sample, foi possivel analisar os desempenhos e analisar as hipoteses formuladas conside-

rando a varidvel de casos confirmados

O pipeline utilizado para modelagem pode ser observado através do seguinte flu-

xograma
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Pipeline da construcao de modelos e obtencao de métricas
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Fonte: Elaborado pelo autor (2025)

5.3.1 CASOS CONFIRMADOS

Apoés treinarmos os modelos utilizando o método de cross validation e via out of
sample, foi possivel analisar os desempenhos e analisar as hipoteses formuladas conside-

rando a varidvel de casos confirmados

Para melhor organizacao, as tabelas com os resultados serao mostradas em 2 blocos
distintos. Primeiro, para os modelos com previsao 1 passo a frente, onde o método TSCV
foi utilizado, e depois para os modelos com previsao 4 passos a frente, onde o método
OOS foi utilizado

E importante destacar que células que nao apresentam valores de RMSE, sdao por
conta de modelos que nao foram possiveis de serem estimados. Esse erro ocorreu apenas
para os modelos GLARMA, e se da por conta nao convergéncia dos métodos numéricos

utilizados para a estimacao dos parametros do modelo

- AVALIACAO EM UM HORIZONTE CURTO DE PREVISAO VIA
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TIME SERIES CROSS-VALIDATION

Tabela 3 — RMSE via TSCV por municipio estrato de casos baixos

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Berizal 1.232 1.275 - - 0.752 0.757 0.767
Caiana 0.568 0.444 - - 0.439 0.492 0.491
Cascalho Rico 11.015 10.804 11.113 11.000 10.823 10.800 10.823
Cristiano Otoni  0.903 1.019 0.707 1.000 0.903 0.917 0.903
Divinésia 0.780 0.428 - - 0.687 0.676 0.676
Dom Vigoso 0.078 0.229 - - 0.198 0.202 0.202
Franciscopolis 0.541 10.499 2.500 1.225 1.772 1.408 2.222
Glaucilandia 1.252 3.396 - - 0.905 1.138 1.141
Guidoval 0.344 0.335 0.866 0.758 0.314 0.327 0.322
Ipuitina 0.891 0.514 1.414 1.257 0.801 0.649 0.618
Piracema 0.991 0.943 1.225 0.866 0.991 1.006 1.006
Ponto Chique 0.437 0.500 0.500 0.707 0.422 0.479 0.495
Vazante 1.193 0.900 - - 1.270 1.270 1.221

Dos 13 municipios classificados com nivel baixo de casos confirmados, o modelo
ARMA apresentou o melhor desempenho em apenas 1 localidade. O modelo NNETAR
destacou-se em 3 municipios, enquanto o GLARMA obteve o menor RMSE em 2 casos.
J4 o modelo INGARCH foi o mais eficiente em 6 municipios, destacando-se como aquele

que apresentou o melhor desempenho no maior nimero de ocorréncias.

Cabe ressaltar que a primeira hipétese formulada foi confirmada para este estudo
de caso: os modelos de contagem superaram os modelos tradicionais, apresentando melhor

desempenho em 8 municipios

Além disso, quando comparamos os métodos para selecdo automatica de ordem
de parametros, vemos que o método ARMA-based foi o melhor 6 ocasides, enquanto o
Naive-Search foi o melhor em 2 ocasides (todas em modelos GLARMA) e o método via

LASSO foi o melhor em apenas 1 ocasiao

Tabela 4 — RMSE via TSCV por municipio estrato de casos médio

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Alpinépolis 0.633 0.654 1.155 0.577 2.467 0.801 0.729
Araguai 7.105 7.884 8.930 5.766 5.257 6.776 6.776
Caxambu 6.144 6.156 - - 6.439 6.487 6.487
Conselheiro Pena 2.292 1.456 - - 1.877 1.205 1.905
Coronel Fabriciano 11.558 11.811 18.815 11.522 11.972 11.972 11.994
Cruzilia 4.401 1.681 - - 3.773 2.429 2.334
Joao Pinheiro 2.037 1.927 2.872 2.550 2.576 2.807 2.166
Leopoldina 6.185 6.739 7.246 7.714 6.005 6.428 7.019
Mirai 0.689 1.542 - - 1.243 1.232 1.232
Ouro Branco 4.793 6.045 - - 4.202 5.075 4.200
Santana do Jacaré 3.774 4.063 - - 2.972 3.555 3.433
Sao José da Lapa 2.758 6.731 4.387 2.646 2.758 2.703 3.161

Verissimo 0.207 0.081 1.936 2.062 0.316 2.169 0.060
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Analisando os municipios com nivel mediano de casos confirmados, vemos que os
modelos ARMA e NNETAR apresentaram o menor RMSE em 2 municipios cada. Ja o
modelo GLARMA teve o melhor desempenho em 3 ocasides, e o0 modelo INGARCH foi o

melhor em 5 cidades

Novamente, vemos que os modelos de contagem apresentaram um desempenho
superior aos modelos tradicionais, se mostrando como a melhor alternativa em 9 dos 13
municipios analisados. Além disso, vemos que o modelo INGARCH foi aquele a apresentar
o melhor desempenho, se mostrando o melhor modelo tanto para o estrato de casos baixo

como casos medianos

Analisando os métodos para selecao automatico de ordem de parametros, vemos
que o método Naive-Search foi aquele a apresentar o menor RMSE em mais ocasioes,
tendo o melhor desempenho em 5 municipios. Ja o método via LASSO foi o melhor em

apenas 1 ocasiao, sendo aquele com menor destaque dentre os 3 métodos

Tabela 5 - RMSE via TSCV por municipio estrato de casos alto

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Andradas 15.033 17.246 - - 15.729 15.729 12.941
Arcos 213.855 244.020 214.76 221.588 199.418 236.637 213.383
Capelinha 3.554 7.690 - - 3.377 4.134 3.916
Congonhas 23.990 23.338 28.00 22.000 17.337 20.723 19.404
Curvelo 21.677 31.214 - - 20.471 20.168 20.382
Governador Valadares 17.997 15.410 - - 16.161 20.042 20.042
Itapecerica 20.568 27.670 9.22 12.649 20.908 21.183 19.838
Ttat de Minas 10.720 9.920 6.18 7.000 8.552 9.880 9.916
Ttuiutaba 4.683 5.481 - - 28.680 5.935 3.016
Joao Monlevade 14.406 12.236 12.50 13.601 12.296 13.422 11.877
Lagoa da Prata 4.595 2.608 - - 4.956 4.101 3.613
Mariana 41.345 51.652 - - 45.337 45.337 44.332
Sao Joao del Rei 15.688 11.568 3.00 1.450 15.816 15.536 14.702

Passando para o cenario dos municipios com a maior volumetria de casos confir-
mados, vemos que os modelos de contagem apresentaram o melhor desempenho em 10

dos 13 municipios.

Novamente, vemos que o modelos INGARCH foi aquele a apresentar o melhor

desempenho em mais ocasioes, tendo o menor RMSE em 6 municipios

Vale destacar que para os casos no qual o modelo GLARMA se mostrou superior,
a diferenca para os outros modelos foi significativa, chegando a um ganho de desempenho

médio proximo a 60% quando comparado ao segundo melhor modelo de outra familia

- AVALIACAO EM UM HORIZONTE LONGO DE PREVISAO VIA
OouT OF SAMPLE
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Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Berizal 0.820 2.043 - - 0.616 0.696 0.656
Caiana 0.483 0.655 - - 0.427 0.443 0.452
Cascalho Rico 11.000 10.686 11.000 10.050 10.804 10.824 10.813
Cristiano Otoni  0.896 0.900 0.500 1.000 0.888 0.883 0.886
Divinésia 0.738 0.480 - - 0.671 0.671 0.642
Dom Vigoso 0.066 0.600 - - 0.422 0.485 0.477
Franciscépolis 0.752 7.811 2.550 1.225 1.726 1.771 3.850
Glaucilandia 1.118 1.192 - - 0.908 1.073 1.085
Guidoval 0.354 0.393 0.027 0.500 0.354 0.362 0.363
Ipuitina 0.784 0.521 0.119 0.866 0.870 0.718 0.462
Piracema 0.990 0.959 2.062 0.707 1.005 0.965 0.971
Ponto Chique 0.433 0.427 0.707 0.707 0.414 0.445 0.442
Vazante 1.000 1.441 - - 1.020 1.030 0.914

Passando a avaliar um horizonte de previsao para o intervalo de 4 semanas epide-

miolodgicas, vemos que os modelos de contagem continuam a apresentar um desempenho

superior quando comparados aos modelos tradicionais para o estrato "baixo” de casos

confirmados. Dos 13 municipios analisados, os modelos desenvolvidos nesse trabalho apre-

sentaram um desempenho superior em 10 casos, sendo 5 vezes para o modelo INGARCH

e b vezes para o modelo GLARMA

Vale destacar que novamente os métodos de selecao automaéatica de parametros

ARMA-based se mostraram superior aos demais, sendo o melhor método em 6 dos 10

municipios nos quais os modelos de contagem foram os melhores

Tabela 7 — RMSE via OSS por municipio estrato de casos médio

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Alpinépolis 1.070 0.748 1.118 3.279 2.525 1.258 1.225
Araguai 5.355 8.271 3.571 5.050 5.217 5.254 5.281
Caxambu 5.196 5.342 - - 5.231 5.215 5.183
Conselheiro Pena 1.952 1.412 - - 1.429 1.422 1.461
Coronel Fabriciano 9.550 12.510 9.618 10.840 9.449 9.448 10.029
Cruzilia 4.510 19.764 - - 3.873 2.995 2.869
Joao Pinheiro 1.649 2.139 5.635 2.958 2.734 2.962 2.053
Leopoldina 6.128 6.262 7.566 7.036 6.121 6.129 6.178
Mirai 0.470 4.297 - - 1.808 1.855 1.963
Ouro Branco 4.361 15.436 - - 4.354 4.370 4.552
Santana do Jacaré  2.710 3.597 - - 2.913 2.700 2.557
Sao José da Lapa 2.741 15.728 3.428 2.739 2.734 2.521 3.238
Verissimo 0.000 2.473 3.606 2.550 0.447 2.548 0.003

Assim como no cenario de um horizonte de previsao curto, os modelos de contagem

também apresentaram um desempenho superior no cenario de horizonte de previsao longo

considerando um estrato de casos confirmados médios. Dos 13 municipios analisados, os

modelos de contagem apresentaram desempenho superior aos modelos tradicionais em 8

ocasioes
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Analisando os métodos de selecdo automatica de ordem de pardmetros, vemos
uma boa distribuicao de desempenho entre os 3 métodos desenvolvidos nesse trabalho.
Diferentemente do cenario para o estrato "baixo” de casos confirmados, onde vimos uma
desempenho superior do método ARMA-based, para o cenario atual vemos que RMSE
entre familias de modelos iguais tivaram uma diferenca minima. Como para o municipio
de Coronel Fabriciano, onde a delta do RMSE foi de 0,001

Tabela 8 — RMSE via OSS por municipio estrato de casos alto

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Andradas 12.846 16.304 - - 13.590 13.644 12.427
Arcos 169.748 300.994 184.022 183.899 169.102 169.066 173.505
Capelinha 3.159 25.824 - - 4.597 3.982 4.968
Congonhas 15.867 14.772 - - 15.706 15.713 16.025
Curvelo 14.168 16.168 - - 15.197 15.344 15.288
Governador Valadares 14.215 42.353 - - 16.179 17.429 17.245
Itapecerica 14.702 15.896 - - 15.093 15.025 15.701
Itat de Minas 9.432 9.855 - - 8.145 8.296 8.199
Ituiutaba 3.742 8.342 - - 29.612 18.513 5.870
Jodao Monlevade 12.132 12.236 11.000 12.379 12.143 12.173 11.179
Lagoa da Prata 5.469 2.792 - - 5.105 4.575 4.097
Mariana 33.249 46.887 - - 33.577 33.541 34.661
Séo Jodo del Rei 11.470 11.370 - - 11.472 11.432 11.525

No ultimo cenario avaliado para a variavel de casos confirmados, onde foi estudado
um horizonte de previsapo longo com alta volumetria, vimos que pela primeira vez um

destaque dos modelos tradicionais em relagao aos modelos de contagem.

Dos 13 municipios analisados, os modelos tradicionais apresentaram desempenho
superior em 9 ocasioes, com destaque para o modelo ARMA que teve o melhor desempenho

em 6 municipios.

Assim como ja imaginado e definido via hipdtese, o ganho de desempenho que
¢ visto dos modelos de contagem em relagao aos modelos tradicionais em volumetria
menores, diminui a medida que essa volumetria aumenta. Vimos a diminui¢ao dos modelos
de contagem se mostrando como os melhores a medida que a volumetria aumentava,
Y

saindo de 10 ocasides para o estrato "baixo”, indo para 8 ocasioes para o estrato "médio’

e chegando a apenas 3 ocasioes no estrato "alto”

Um ponte interessante observado aqui foi que essa perda de desempenho nao foi
observada para um horizonte de previsao curto, como mostrado na secao anterior, onde os

modelos de contagem apresentaram o melhor desempenho para os 3 estratos analisados.

Assim, notamos que os modelos de contagem estrapolaram a zona 6tima de mo-

7
delagem descrita na hipotese, onde além de apresentarem um o6timo desempenho para
estratos de casos "baixos”, eles tambem foram superiores para estratos medios (horizonte

de previsao curto e longo) e altos (horizonte de previsao curto)
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5.3.2 OBITOS

Para avaliacdo dos modelos de previsao para obitos, o fluxo de trabalho desenvol-
vido foi o mesmo daquele utilizado na modelagem de casos confirmados. Ou seja, para
avaliacdo do modelo em um horizonte de previsao curto, o método de TSCV foi utilizado,
onde modelos para os estratos de volumetria de 6bitos "baixissimo”, "baixo”, "médio”,

"alto”. Ja para a avaliacao dos modelos em um horizonte de previsao longo, o método

OOS foi utilizado

- AVALIACAO EM UM HORIZONTE CURTO DE PREVISAO VIA
TIME SERIES CROSS-VALIDATION

Tabela 9 - RMSE via TSCV por municipio estrato de 6bitos baixissimo

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Abaeté 0.000 0.066 0.000 0.5 0.061 0.061 0.061
Bom Sucesso 0.503 0.480 1.118 0.5 0.482 0.482 0.482
Coragao de Jesus 0.000 0.020 0.500 0.0 0.020 0.020 0.020
Corinto 0.000 0.021 0.000 0.0 0.020 0.020 0.020
Ervalia 0.000 0.022 0.000 0.0 0.020 0.020 0.020
Itatina 0.000 0.022 0.000 0.0 0.020 0.020 0.020
Itinga 0.000 0.021 0.000 0.0 0.020 0.020 0.020
Januaria 0.000 0.044 0.000 0.0 0.040 0.040 0.040
Jaiba 0.000 0.042 0.000 0.5 0.040 0.040 0.040
Matutina 0.000 0.021 0.000 0.0 0.020 0.020 0.020
Mutum 0.000 0.000 0.000 0.0 0.020 0.020 0.020
Nova Unigdo 0.000 0.021 0.000 0.0 0.020 0.020 0.020

E possivel observar que, para o estrato baixissimo, diversos modelos apresentaram
RMSE igual a zero, ou seja, a estimativa pontual produzida foi exatamente igual ao valor

real a ser estimado.

Embora isso possa parecer um bom sinal a primeira vista, no contexto de modelos
estatisticos e de aprendizado de maquina, espera-se que exista algum erro associado as
previsoes. Quando um modelo nao apresenta erro algum, frequentemente estamos diante
de um caso de overfitting ou sobreajuste , situagdo em que o modelo se adapta excessi-

vamente aos dados de treinamento, perdendo a capacidade de generalizagao para novos
dados.

No conjunto de dados analisado, esse fendomeno ocorre principalmente devido a
predominancia de valores zero ao longo das semanas epidemiolégicas. O estrato baixissimo
é composto por municipios que registraram entre 1 e 4 6bitos confirmados durante o ano de
2024, distribuidos ao longo das 52 semanas epidemioldgicas. Isso significa que, na maioria
dessas semanas, o nimero de 6bitos registrados foi zero, o que influencia fortemente o

treinamento dos modelos.

Diante dessa alta frequéncia de zeros, os modelos acabam também gerando estima-

tivas iguais a zero, o que leva ao falso indicio de desempenho perfeito. No entanto, esse
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tipo de ajuste pode ser problematico, pois aumenta o risco de o modelo nao ser capaz
de identificar mudancas no padrao dos 6bitos ao longo do tempo. Ou seja, ao se ajustar
perfeitamente ao conjunto de treinamento, o modelo tende a apresentar estimativas en-
viesadas, frequentemente prevendo valores iguais a zero e falhando em detectar possiveis

aumentos no numero de 0bitos.

Para series temporais com esse tipo de fendmeno, os modelos de contagem apresen-
tados podem ser utilizados, mas é importante destacar novamente que esses possuem uma

baixa capacidade de se adaptarem em mudancas rapidas quando esse fenémeno ocorre

Para captar essas mudancas, outros tipos de abordagens podem ser recomendadas,
onda essas estao além do escopo desse trabalho, mas valem ser mencionadas caso o leitor

se interesse em se aprofundar no tema.

- Testes de hip6tese para deteccao de pontos de mudanca (change point detection):
Essa abordagem busca identificar momentos em que hd uma mudanca estatisticamente
significativa na distribuicao da série temporal como uma mudanca na média, na variancia
ou na tendéncia. Métodos como o CUSUM, Pelt, ou Bayesian Change Point Detection
podem ser utilizados para detectar possiveis transigoes, mesmo em séries com muitos

valores constantes.

- Modelos com varidveis ex6genas (ARMAX, GLARMAX, INGARCHX): Incorpo-
rar varidveis externas como o numero de casos confirmados em semanas anteriores pode
ajudar os modelos a capturar padroes latentes e antecipar mudancgas, mesmo quando a
variavel resposta apresenta muitos zeros. O sufixo X representa uma referencia ao termo

eXogenous variables, ou variaveis exdgenas em portugués.

- Modelos para dados esparsos ou inflacionados com zeros: Em situagbes com
excesso de zeros, modelos especificos como o Zero-Inflated Poisson (ZIP) ou o Zero-Inflated
Negative Binomial (ZINB) podem ser mais adequados. Esses modelos assumem que os
zeros podem vir de dois processos distintos: um que sempre gera zero (como a auséncia

real de eventos) e outro que segue uma distribui¢ao de contagem.

- Modelos bayesianos e hierarquicos: Abordagens bayesianas permitem incorporar
informagoes a priori e podem ser tteis para suavizar previsoes em séries com baixa incidén-
cia de eventos. Modelos hierarquicos também podem aproveitar informacgoes de diferentes

municipios ou regioes para melhorar as estimativas em locais com poucos dados.
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Tabela 10 — RMSE via TSCV por municipio estrato de ébitos baixo

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Barbacena 0.142 0.093 0.0 0.0 0.142 0.087 0.087
Boa Esperanca 0.142 0.112 0.5 0.000 0.142 0.114 0.142
Formiga 0.162 0.182 0.0 0.500 0.162 0.162 0.162
Frutal 0.182 0.212 0.0 0.000 0.182 0.182 0.182
Ttuiutaba 0.119 0.028 - - 0.100 0.115 0.121
Joao Monlevade 0.101 0.094 0.0 0.500 0.101 0.170 0.101
Manhuagu 0.121 0.123 0.0 0.0 0.121 0.141 0.121
Mariana 0.101 0.254 0.0 0.577 0.101 0.235 0.101
Pogos de Caldas 0.548 0.499 - - 0.514 0.515 0.514
Ribeirdao das Neves 0.006 0.165 - - 0.142 0.106 0.123
Sao Sebastido do Paraiso 0.336 0.187 - - 0.360 0.146 0.142
Unai 0.142 0.159 0.500 0.500 0.142 0.108 0.142

Observamos novamente a ocorréncia do fenémeno de overfitting em alguns modelos,
com destaque para os ajustes realizados pelo GLARMA. Esse resultado evidencia que,
mesmo os modelos de contagem, teoricamente mais adequados para lidar com dados
discretos, podem apresentar comportamentos inesperados e desempenho insatisfatorio
quando aplicados a dados reais, sujeitos a variabilidade e imperfei¢oes de medicao. Ainda
assim, é possivel notar que o modelo INGARCH se mostrou mais robusto e consistente
nesse tipo de cenario, uma vez que nenhum dos ajustes dessa classe apresentou residuos
nulos, indicando uma modelagem mais estavel e adequada as caracteristicas do conjunto

de dados analisado.

Tabela 11 — RMSE via TSCV por municipio estrato de ébitos medio

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Araxa 0.243 0.254 0.000 0.500 0.243 0.243 0.243
Conselheiro Lafaiete 0.583 0.619 0.707 0.707 0.572 0.437 0.580
Contagem 0.960 1.059 1.118 1.118 0.958 1.013 1.087
Divinépolis 0.632 0.758 1.414 1.291 0.618 0.619 0.618
Governador Valadares 1.035 1.079 1.225 1.118 0.989 0.989 0.989
Teofilo Otoni 1.247 6.013 - - 0.276 1.070 1.070
Trés Coragoes 0.202 0.228 0.000 0.707 0.202 0.189 0.202

Para o estrato de 6bitos classificado como médio, que compreende os municipios
com uma faixa de 10 a 20 6bitos ao longo de 2024, observou-se que o modelo GLARMA
apresentou residuo igual a zero em dois municipios, indicando possivel instabilidade no

ajuste.

Nos cinco municipios restantes, o modelo INGARCH demonstrou desempenho su-
perior em relacao aos demais, confirmando a tendéncia ja observada nos outros estratos.
Esse resultado refor¢ca que o INGARCH ¢é particularmente eficaz em contextos caracteri-
zados por séries temporais longas como as 52 semanas epidemioldgicas analisadas , mas
com baixa volumetria de eventos por periodo, isto é, médias inferiores a 2 6bitos por
meés. Tal configuracao evidencia a capacidade do modelo em lidar adequadamente com

contagens reduzidas e dispersas, preservando estabilidade e boa qualidade preditiva
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Tabela 12 — RMSE via TSCV por municipio estrato de 6bitos alto

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Belo Horizonte 1.780 1.710 2.550 2.121 2.204 2.137 1.807
Juiz de Fora 0.275 0.376 0.707 0.866 0.546 0.474 0.546
Uberaba 0.633 0.467 0.707 0.707 0.643 0.621 0.643
Uberlandia 1.668 3.097 1.658 2.121 1.322 1.733 1.733

Para o estrato de 6bitos alto, que abrange municipios com maior volumetria de
registros, como Belo Horizonte, Juiz de Fora, Uberaba e Uberlandia, observamos um com-
portamento distinto em relacao aos estratos anteriores. Nesses casos, as séries temporais
apresentam menor predominancia de zeros e maior variabilidade semanal, o que torna o
ajuste dos modelos mais desafiador, mas também mais informativo para a comparagao de

desempenho.

De forma geral, o ARMA e o NNETAR mantiveram desempenho competitivo, com
destaque para o modelo baseado em rede neural, que apresentou o menor RMSE em dois
dos quatro municipios analisados (Belo Horizonte e Uberaba). Esse resultado sugere que,
em contextos com maior densidade de observacoes e padroes temporais mais complexos,
abordagens nao lineares sao capazes de capturar melhor as dinamicas locais dos dados,

beneficiando-se da maior quantidade de variacao disponivel para o treinamento.

Por outro lado, os modelos de contagem (GLARMA e INGARCH), que haviam
se destacado nos estratos de menor volumetria, apresentaram desempenho inferior nesse
grupo. O modelo GLARMA, em particular, mostrou RMSEs elevados, ultrapassando
2.0 em Belo Horizonte e 0.7 em Juiz de Fora, indicando uma possivel limitacdo na sua
capacidade de acomodar flutuagbes mais amplas e padroes mais irregulares quando o

numero de eventos é alto.

Entre os modelos da classe INGARCH, o método baseado em um modelo ARMA
apresentou o melhor desempenho em Uberlandia (RMSE = 1.322), superando os demais
modelos, inclusive o NNETAR. Esse comportamento reforca que, embora os modelos
de contagem sejam mais adequados para dados discretos, seu desempenho é sensivel ao
regime de variabilidade: eles tendem a ser mais estaveis em séries com baixa média e
dispersao controlada, mas podem perder acuracia conforme aumenta a amplitude das

contagens semanais.

- AVALIACAO EM UM HORIZONTE LONGO DE PREVISAO VIA
OuUT OF SAMPLE
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Tabela 13 — RMSE via OSS por municipio estrato de 6bitos baixissimo

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Abaeté 0.0 0.060 0.0 0.0 0.066 0.063 0.067
Bom Sucesso 0.5 0.480 0.5 0.5 0.479 0.480 0.474
Coragédo de Jesus 0.0 0.021 0.0 0.0 0.020 0.020 0.021
Corinto 0.0 0.019 0.0 0.0 0.016 0.022 0.022
Ervalia 0.0 0.021 0.0 0.5 0.023 0.021 0.019
Itatina 0.0 0.023 0.0 0.0 0.021 0.022 0.017
Itinga 0.0 0.019 0.0 0.0 0.023 0.019 0.020
Januéria 0.0 0.041 0.5 0.0 0.047 0.042 0.046
Jaiba 0.0 0.044 0.0 0.0 0.041 0.046 0.045
Matutina 0.0 0.022 0.0 0.0 0.020 0.019 0.021
Mutum 0.0 0.0 0.0 0.0 0.019 0.022 0.018
Nova Unigdo 0.0 0.020 0.0 0.0 0.025 0.023 0.020

Tabela 14 — RMSE via OSS por municipio estrato de 6bitos baixo

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Barbacena 0.146 0.095 0.0 0.5 0.144 0.101 0.107
Boa Esperanca 0.146 0.173 0.5 0.0 0.143 0.136 0.141
Formiga 0.167 0.174 0.0 0.0 0.157 0.159 0.162
Frutal 0.188 0.183 0.0 0.5 0.193 0.175 0.188
Ituiutaba 0.152 0.063 - - 0.127 0.113 0.119
Joao Monlevade 0.104 0.109 0.0 0.5 0.099 0.209 0.100
Manhuacu 0.125 0.109 0.0 0.0 0.111 0.128 0.135
Mariana 0.104 0.308 0.5 0.0 0.094 0.274 0.104
Pogos de Caldas 0.500 0.455 - - 0.468 0.463 0.459
Ribeirao das Neves 0.006 0.145 - - 0.144 0.128 0.154
Sao Sebastiao do Paraiso 0.372 0.396 - - 0.465 0.146 0.149
Unai 0.146 0.140 0.0 1.0 0.134 0.128 0.154

Ao avancar para o estrato de 6bitos baixo, a leve elevagao na frequéncia de registros
permite uma analise mais sensivel das diferencas entre modelos. Novamente, vemos que
o modelo GLARMA apresentou o fenomeno de overffitng, tendo RMSE igual a 0 em 6
dos 12 municipios analisados. O modelo INGARCH néao apresentou esse problema, e se
mostrou como o modelo com melhor desempenho em 6 casos (excluindo o GLARMA com

overffitng da andlise)

Tabela 15 — RMSE via OSS por municipio estrato de 6bitos médio

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Araxa 0.250 0.271 0.500 0.000 0.265 0.260 0.250
Conselheiro Lafaiete 0.579 0.505 0.707 1.225 0.581 0.391 0.576
Contagem 0.958 0.957 1.118 0.707 0.966 0.881 0.953
Divinépolis 0.640 0.734 1.118 1.118 0.630 0.630 0.599
Governador Valadares 1.118 0.968 1.118 1.323 0.987 1.000 0.976
Teofilo Otoni 1.708 8.262 - - 0.333 1.454 1.487
Trés Coragoes 0.208 0.196 0.000 0.000 0.204 0.201 0.209

No estrato de 6bitos médio, onde ha maior regularidade e densidade de eventos,

os resultados indicam uma transicio no desempenho relativo entre familias de modelos.
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Embora ainda haja forte presenca de modelos de contagem entre os melhores, os ganhos
em relacao aos métodos tradicionais se tornam mais sutis, com RMSEs proximos entre
as abordagens. Casos como Governador Valadares e Conselheiro Lafaiete ilustram essa
convergéncia: a diferenca de desempenho entre o melhor modelo INGARCH e o modelo
ARMA foi inferior a 0.1 ponto no RMSE. Ainda assim, os modelos INGARCH (nas
variantes LASSO e Naive) se destacaram em trés dos sete municipios, mostrando boa
adaptabilidade as flutuagoes moderadas das séries. A constancia dos resultados para o
GLARMA e a estabilidade dos erros reforcam a coeréncia metodoldgica observada também

nos horizontes curtos.

Tabela 16 — RMSE via OSS por municipio estrato de obitos alto

Municipio ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive
Belo Horizonte 1.658 1.808 3.391 2.915 2.267 2.128 1.661
Juiz de Fora 0.317 0.523 0.707 0.707 0.574 0.549 0.573
Uberaba 0.567 0.892 1.118 0.500 0.576 0.585 0.587
Uberlandia 1.374 1.548 1.936 1.871 1.300 1.405 1.400

Por fim, no estrato de obitos alto, caracterizado por séries mais longas, regulares e
com padroes temporais mais estruturados, observa-se um comportamento distinto do veri-
ficado nos estratos com menor volumetria. Nesse grupo, os modelos tradicionais (ARMA
e NNETAR) voltam a apresentar desempenho competitivo, com destaque para o ARMA,
que apresentou o menor RMSE em Belo Horizonte e Juiz de Fora. Entretanto, diferente-
mente do que ocorreu no cenario de uma previsao 1 passo a frente, os modelos de contagem
nao perdem completamente relevancia: em Uberlandia, o modelo INGARCH com método
ARMA-Based obteve o menor erro preditivo, enquanto em Uberaba o modelo GLARMA
com método Naive-Search se destaca. Assim, ha um equilibrio mais pronunciado entre os
dois blocos de modelagem, com dois municipios favorecendo modelos tradicionais e dois

favorecendo modelos de contagem.

Essa mudancga de tendéncia reforca a hipétese formulada inicialmente no trabalho:
o ganho dos modelos de contagem é maior em contextos de baixa volumetria e tende a se
reduzir progressivamente a medida que a frequéncia de observagoes aumenta, perdendo

relevancia quando o comportamento da série se aproxima de uma dindmica quase continua.

5.3.3 AVALIACAO TEMPO DE EXECUCAO DE CADA MODELO

As tabelas apresentadas a seguir descrevem os tempos de estimagdo, previsao e
tempo total de execugao dos modelos considerados, organizados por estrato (baixo, médio

e alto).

Para o calculo do tempo de execu¢ao dos modelos, cada método foi executado em

triplicata, onde o resultado final foi a média das 3 execugoes.
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Para estimacao e previsao dos modelos, o conjunto de dados de casos confirma-
dos da COVID-19 foi utilizado novamente. Para o calculo de tempo das previsao, foi

estabelecido um intervalo de previsao 1passo a frente

Tabela 17 — Tempo de estimagao de cada modelo (segundos)

Estrato ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Baixo 0.170 0.074 0.377 0.384 1.476 4.675 23.198
Médio  0.209 0.077 0.386 0.396 1.697 5.886 24.858
Alto 0.189 0.090 0.341 0.353 1.532 6.262 34.249

Considerando apenas o tempo de estimacao dos parametros de cada modelo, observa-
se que o NNETAR se destaca por ser o tnico a apresentar tempo inferior a 1 centésimo

de segundo.

Os modelos ARMA e GLARMA apresentaram tempos semelhantes, variando entre

0,1 e 0,4 segundos para a estimacao.

Os modelos INGARCH foram os que demandaram maior tempo computacional.
Entre eles, os métodos ARMA-Based levaram menos de 2 segundos, enquanto o método

baseado em LASSO apresentou tempo médio de 5 segundos.

Destaca-se o INGARCH via Naive-Search, que registrou tempo médio de 27 se-
gundos, sendo o modelo/método com maior tempo de estimagao. Esse resultado ji era
esperado, pois esse método estima o maior niimero de modelos preliminares entre os pro-
cedimentos de selegdo automatica das ordens dos pardmetros. Ainda assim, nota-se que o
tempo de execucao ¢é significativamente superior ao observado no modelo GLARMA. Essa
diferenca decorre da instabilidade dos modelos GLARMA, que, como ja discutido na sec¢ao
de previsao de casos confirmados e 6bitos e nas tabelas de comparacao de RMSE, apre-
sentam dificuldades de convergéncia para determinadas ordens de parametros. Quando
o método numérico nao converge, o processo de estimacao ¢ interrompido, reduzindo o

tempo final de execugao do algoritmo.

Ao analisar a relagao entre o tempo de estimagao e a volumetria modelada (estratos
baixo, médio e alto), observa-se que, para modelos e métodos de rapida estimacao (tempo
inferior a 5 segundos), nao é possivel identificar uma relagao clara. Ja entre aqueles cujo
tempo ultrapassa 5 segundos, nota-se que as maiores volumetrias estao associadas aos

maiores tempos de estimacao.

Tabela 18 — Tempo de previsao de cada modelo (segundos)

Estrato  ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

Baixo 0.037 104.460 0.031 0.030 0.031 0.032 0.031
Médio  0.034 99.904 0.028 0.028 0.031 0.032 0.029
Alto 0.033 99.570 0.027 0.027 0.034 0.034 0.032
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Analisando o tempo médio de previsao, em segundos, obtido para cada modelo nos
diferentes estratos de volumetria. Observa-se que o NNETAR apresentou um tempo de
previsao substancialmente superior aos demais, variando entre aproximadamente 99 e 104
segundos, enquanto os demais modelos demandaram menos de 0,04 segundos em todos os
estratos. Em termos praticos, o tempo de previsao do NNETAR é cerca de 2.600 vezes
superior ao observado nos demais modelos, evidenciando o elevado custo computacional

associado a sua etapa preditiva.

Esse comportamento pode ser explicado pela estrutura computacional adotada na
etapa de previsao do NNETAR, conforme implementado no pacote fable. Diferentemente
dos modelos lineares (ARMA, GLARMA e INGARCH), que possuem expressoes fechadas
ou recorréncias analiticas para gerar previsdoes multi-passo de forma direta, o NNETAR
realiza previsoes de forma recursiva: cada passo previsto é utilizado como entrada para o

passo seguinte.

Além disso, o método forecast. NNETAR(), implementado no pacote fable, executa,
por padrao, multiplas simulagoes para compor os intervalos de previsao. Assim, o algo-
ritmo repete o processo preditivo diversas vezes, gerando trajetorias futuras independentes
e, em seguida, agregando-as para estimar a distribuicao dos valores previstos, realizando
portanto um bootstrap nao paramétrico. Esse processo, ainda que essencial para a carac-

terizagao da incerteza do modelo, aumenta substancialmente o custo computacional.

Outro fator relevante é que, diferentemente dos modelos lineares, o NNETAR
nao armazena uma matriz de coeficientes ou estrutura paramétrica simples para célculo
direto da previsao. Cada iteragao envolve a execucao completa da rede neural o que
inclui operacoes de multiplicagdo de matrizes e aplicagdo de fungoes de ativacdo para

cada simulacao e para cada passo a frente no horizonte de previsao.

E portanto, apesar de o NNETAR apresentar tempo de estimacao reduzido, como
discutido anteriormente, o custo computacional é transferido para a fase de previsao,

tornando-o o modelo com o maior tempo de execucao entre os avaliados

Tabela 19 — Tempo de total (estimagao + previsao) de cada modelo (segundos)

Estrato ARMA NNETAR GLA ARMA GLA Naive ING ARMA ING LASSO ING Naive

baixo 0.207 104.535 0.408 0.414 1.508 4.707 23.229
medio  0.242 99.980 0.414 0.424 1.728 5.917 22.887
alto 0.222 99.660 0.368 0.380 1.567 6.296 34.281

Ao considerar o tempo total de execucao, isto é, a soma dos tempos de estimagcao
e previsao, observa-se que o modelo NNETAR apresenta, de forma consistente em todos
os estratos, o maior tempo total entre os métodos avaliados, variando entre aproximada-
mente 100 e 104 segundos. Esse resultado reforca a conclusdo anterior de que, embora

o NNETAR possua uma etapa de estimagao rapida, seu elevado custo computacional na
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fase de previsao domina o tempo total do processo.

Em comparacao, o INGARCH via Naive-Search, que ja havia se destacado por
ser o método de estimagao mais demorado (cerca de 23 a 34 segundos), apresenta menos
da metade do tempo total de execugdo do NNETAR. Essa diferenga evidencia o peso
desproporcional que o processo de previsao exerce sobre o desempenho computacional
do NNETAR, uma vez que os demais modelos, mesmo os mais complexos na estimagao,

mantém tempos de previsao praticamente despreziveis.

O modelo ARMA apresentou os menores tempos de execucao, variando entre 0.207
e 0.242 segundos, refletindo a simplicidade estrutural do modelo e o fato de que tanto a
estimacao quanto a previsao sao computacionalmente diretas, sem necessidade de simula-

¢Oes ou processos iterativos complexos.

Os métodos GLARMA, mostraram tempos intermediarios, préximos de 0,368 a
0,424 segundos. Embora a previsao desses modelos seja praticamente instantanea devido
a linearidade da estrutura, a estimacao iterativa dos parametros GLARMA eleva o tempo
total em relagdo ao ARMA.

Entre os modelos INGARCH, observa-se uma diferenciacao clara nos tempos de
execucao. O método ARMA-Based apresentou tempos entre 1,508 e 1,728 segundos, evi-
denciando o custo da estimacao iterativa sem impactos relevantes na previsao. O via
LASSO demandou um tempo médio maior, entre 4,707 e 6,296 segundos, devido a apli-
cagao da regularizacao LASSO na selecdo dos parametros do modelo. O INGARCH via
Naive-Search destacou-se como o método mais custoso entre os INGARCH, com tempos
variando de 22,887 a 34,281 segundos. Nesse caso, a elevada duragao deve-se a necessi-
dade de avaliar multiplas combinagoes de ordens de parametros, processo intensivo de

estimacao, embora a previsao permaneca rapida.

5.4 ANALISE FINAL DAS HIPOTESES

Com base nos resultados obtidos ao longo das andlises, é possivel avaliar o grau

de evidéncia empirica em relacao as duas hipéteses formuladas neste estudo.

A primeira hipdtese considerava que os modelos de contagem (GLARMA e IN-
GARCH) apresentariam desempenho superior aos modelos tradicionais (ARMA e NNE-
TAR), especialmente em séries com baixa ou média volumetria de eventos. Os resultados
obtidos confirmam essa hipotese de forma consistente. Nos trés estratos de casos confirma-
dos analisados para o horizonte de previsao curto, os modelos de contagem apresentaram
o menor erro em 8, 9 e 10 dos 13 municipios analisados, respectivamente. Essa superio-
ridade também se manteve, em grande parte, no horizonte de previsao longo, sobretudo
para os estratos baixo e médio, com 10 e 8 vitérias sobre os modelos tradicionais, respec-

tivamente. Tais resultados indicam que os modelos de contagem capturam de forma mais
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eficiente a estrutura discreta e heterocedastica das séries epidemiolédgicas, o que os torna

mais adequados para modelar dados de baixa frequéncia e alta dispersao.

Entretanto, essa vantagem diminui a medida que a volumetria aumenta. Nos
municipios classificados com alta volumetria, especialmente no horizonte de previsao longo,
observou-se um desempenho mais equilibrado entre as familias de modelos, com vantagem
inclusive para os modelos tradicionais em 9 dos 13 casos analisados. Esse resultado reforca
o argumento de que, em cenarios com maior regularidade temporal, menor dispersao
relativa e maior volumetria absoluta de dados, a modelagem baseada em distribui¢oes
continuas como a gaussiana assumida pelos modelos ARMA tende a ser suficientemente

eficiente, reduzindo a necessidade de abordagens de contagem.

A segunda hipotese estabelecia que os modelos de contagem exigem menor tempo
de treinamento do que o modelo NNETAR, o que os tornaria mais escalaveis para apli-
cagoes envolvendo grande nuimero de séries, como no caso de andlises municipais. Os
resultados obtidos também confirmam essa hipotese. Embora o NNETAR tenha apre-
sentado bom desempenho em termos de acurdcia em alguns contextos, o tempo médio
de estimacao por série foi substancialmente maior do que o observado para os modelos
GLARMA e INGARCH. Essa diferenga decorre da natureza iterativa do processo de oti-
mizagao utilizado em redes neurais, que demanda multiplos ciclos de backpropagation e
ajustes de pesos, em contraste com a estimacao direta e mais eficiente dos parametros nos
modelos de contagem. Dessa forma, os modelos de contagem mostraram-se nao apenas
mais adequados sob o ponto de vista estatistico para séries com baixa contagem, mas
também computacionalmente mais viaveis em cenarios que exigem ajuste em larga escala,

reforcando a vantagem pratica de sua adoc¢ao no contexto epidemioldgico considerado.

Em sintese, ambas as hipdteses formuladas foram confirmadas pelos resultados
empiricos. Os modelos de contagem demonstraram desempenho superior em estratos
de baixa volumetria e apresentaram tempos de treinamento significativamente menores
em comparacao com o NNETAR, evidenciando que a proposta do pacote fableCount é

coerente tanto do ponto de vista estatistico quanto computacional.
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6 POPULARIDADE E PLANOS FUTUROS

Ao longo de mais de um ano de existéncia, o pacote ja acumula mais de 4.4 mil

downloads, segundo dados do site DataScienceMeta.

Rank dos pacotes mais baixados no R - DataScienceMeta

Rank Package Name Downloads Author Maintainer
19887  StepGWR 4,437
19888  SenslAT 4,432
19889 rmass2 4,432
19890 arcpy 4,432
19891 SNVLFDR 4,431
19892 hubEnsembles 4,431
19893  fableCount 4,427
19894 rtms 4,424

Elaborado pelo autor (2025)

O pacote foi langado inicialmente em abril de 2024, com sua primeira versao (0.0.1)
incluindo os modelos INGARCH e GLARMA. Nessa fase inicial, entretanto, o pacote
ainda nao possuia toda a estrutura de modelagem automatizada apresentada ao longo
deste trabalho.

Em maio de 2024, foi langada a versao 1.0.0, considerada a primeira versao com-
pleta do pacote. Essa atualizacao introduziu os métodos de modelagem Naive-Search e
ARMA-Based para os modelos INGARCH e GLARMA.

A versao 1.0.1 consistiu em uma atualizagao de correcao de bugs e adicionou alguns
conjuntos de dados de exemplo, permitindo que o usuario se familiarizasse com o pacote

e sua sintaxe de codigo.

Mais recentemente, a versao 1.1.1 incorporou o método de selecdo automéatica

de ordens de parametros via Post-LASSO, atualmente disponivel apenas para o modelo

INGARCH.

Como perspectivas futuras para o desenvolvimento do pacote, ha diversas linhas
de pesquisa e aprimoramento que podem ser exploradas. O trabalho apresentado aplicou
os dados em conjunto de dados reais, mas é importante entendermos as melhorias dos
modelos de contagem em relagao aos modelos usuais em um estudo de simulacao e por-
tanto trabalhos futuros com estudos de simulacao devem ser realizados, com o objetivo

de avaliar o comportamento dos estimadores e dos métodos de selecao em cenarios con-
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trolados, variando fatores como tamanho amostral, estrutura de dependéncia temporal e
caracteristicas de dispersao. Diferentemente das aplicagoes em dados reais, que refletem
contextos especificos, a simulacdo permite investigar de forma sistematica o desempenho
dos modelos INGARCH e GLARMA sob diferentes configuragoes, possibilitando iden-
tificar situagoes em que cada abordagem apresenta vantagens ou limitagoes. Esse tipo
de estudo também poderia servir de base para propor ajustes nos algoritmos de estima-
¢ao, aperfeicoar a eficiéncia computacional e avaliar a robustez dos critérios de selecao

automatica implementados.

Outro caminho relevante envolve a aplicacdo dos modelos em séries com sobredis-
persao, um fendmeno comum em dados de contagem que apresentam variancia superior
a média. Embora o pacote ja disponha de um método para selecao automatica de distri-
buigoes, este ainda nao foi explorado neste trabalho, nem em simulag¢oes nem em estudos
empiricos, a fim de manter o escopo do projeto focado e conciso. No entanto, investigar o
comportamento do pacote sob condigoes de sobredispersao pode gerar insights importan-
tes sobre a adequacao das distribui¢oes implementadas como Poisson, Binomial Negativa
e suas variantes e sobre a sensibilidade do processo de sele¢do automatica a diferentes
graus de dispersao. Essa andlise poderia resultar em melhorias na heuristica de escolha
da distribuigao, tornando o pacote mais robusto e aplicavel a uma gama maior de séries

temporais de contagem.

Por fim, uma direcdo natural de evolugao para o pacote desenvolvido é o desenvol-
vimento e integracdo do método Post-LASSO para o modelo GLARMA. Atualmente, a
funcionalidade de sele¢ao automatica de ordens de parametros via LASSO estd implemen-
tada apenas para o modelo INGARCH, limitando parcialmente o potencial de automacao
do pacote. A extensao desse método ao GLARMA exigirda um estudo detalhado sobre a
estrutura matematica e os aspectos de estimacao iterativa caracteristicos desse modelo,
de forma a garantir estabilidade numérica e eficiéncia computacional. A inclusao dessa
funcionalidade traria maior simetria entre os modelos suportados, além de fortalecer o
proposito central do pacote de fornecer um ambiente unificado e automatizado para mo-

delagem de séries temporais de contagem dentro do ecossistema tidyverts.
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7 CONCLUSAO

No inicio deste trabalho, identificou-se a necessidade de adoc¢ao de novos mode-
los para a modelagem preditiva epidemiologica, diante das limitacoes observadas nas
abordagens entao utilizadas pela plataforma JF Salvando Todos. Os modelos ARIMA e
NNETAR, até entao empregados, apresentaram uma série de desafios relacionados a esti-
magao, interpretacao dos resultados e desempenho computacional, especialmente quando
aplicados a séries com baixos valores de contagem e elevada granularidade temporal. Es-
sas limitagoes motivaram o desenvolvimento de alternativas mais adequadas a natureza
discreta dos dados epidemioldgicos, capazes de fornecer previsdoes mais consistentes e in-

terpretaveis.

Nesse ambito, o presente trabalho apresentou o desenvolvimento, implementagao
e aplicacao dos modelos GLARMA e INGARCH no ambiente estatistico R, culminando
na criagdo do pacote fableCount, um pacote inédito que buscou integrar a modelagem
de séries temporais de contagem ao ecossistema fable. Ao longo do estudo, foi possivel
aliar a fundamentagao tedrica dos modelos as etapas de programagao, apresentando nao
apenas suas formulagoes matematicas e propriedades estatisticas, mas também a forma
como foram traduzidas em fung¢des computacionais voltadas a usabilidade, eficiéncia e

automacao.

A implementacao dos modelos de contagem permitiu que o pacote incorporasse
funcionalidades avancadas de estimacao e previsao, contemplando a utilizacdo das dis-
tribui¢oes Poisson e Binomial Negativa, além de métodos computacionais robustos para
calculo de previsoes e utilizacao em fluxo ideal de modelagem, chamado de pipeline de
modelagem. A etapa de desenvolvimento computacional buscou seguir a filosofia de au-
tomagao e reprodutibilidade proposta por (Wickham e Bryan 2023), resultando em uma

ferramenta que combina praticidade para o usuario com rigor estatistico.

Outro ponto de destaque foi a implementacao dos algoritmos de modelagem au-
tomatizada, que tornam o pacote capaz de executar de forma autdénoma a selecao de
distribuicoes, a busca de ordens de parametros e a escolha do melhor modelo preditivo.
Os métodos Naive-Search, ARMA-Based e Post-LASSO deram aos usuarios do pacote,
flexibilidade e capacidade de adaptacao a diferentes tipos de séries temporais, promovendo
uma modelagem mais eficiente e acessivel, especialmente em contextos que exigem alto

volume de processamento, como aplicagoes em plataformas epidemioldgicas.

A aplicacao empirica em dados reais refor¢cou a importancia dos modelos de con-
tagem na pratica estatistica. Os resultados demonstraram ganhos expressivos em termos
de desempenho preditivo e computacional, sobretudo em séries com baixos valores de
contagem, nas quais os modelos classicos, como ARIMA, e os modelos baseados em redes

neurais apresentaram um tempo de treinamento substancialmente maior que os demais
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modelos. Assim, comprovou-se que os modelos de contagem, além de oferecerem melhor
aderéncia a natureza discreta dos dados, também produzem previsdoes mais coerentes e

com menor custo computacional em contextos epidemiologicos.

O pacote fableCount ja apresenta uma estrutura sélida e funcional, reunindo os
principais elementos tedricos e computacionais necessarios para a modelagem de séries
temporais de contagem. Entretanto, ha espaco para avangos significativos. Estudos futu-
ros podem contemplar a realizacao de experimentos de simulagao em ambientes controla-
dos, com o objetivo de avaliar o desempenho dos estimadores sob diferentes configuragoes
de dependéncia temporal e dispersao; a aplicagao do método de selecao automatica de
distribuicoes em séries com sobredispersao, permitindo testar sua efetividade em situa-
¢Oes praticas; e, finalmente, o desenvolvimento do método Post-LASSO para o modelo
GLARMA, de forma a expandir as funcionalidades ja existentes para o modelo INGARCH.

Em sintese, este trabalho consolida uma contribuicao relevante tanto para a litera-
tura sobre séries temporais de contagem quanto para a comunidade usuaria do software R,
ao oferecer uma ferramenta pratica, automatizada e alinhada as tendéncias modernas de
modelagem estatistica. Acredita-se que o fableCount possa servir como base para novas
pesquisas e aplicagoes, estimulando o avango de métodos voltados a analise de dados dis-
cretos e fortalecendo a integracao entre teoria estatistica e desenvolvimento computacional

no contexto das séries temporais.
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APENDICE A — Cédigo utilizado para aplicacio

Listing .1 — Trecho de codigo utilizado na modelagem preditiva

1

2

3

4 |covid_dataset =

5 dplyr::bind_rows (

6 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2020_Partel_0lago2025.csv", delim = ";"),

7 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2020_Parte2_0lago2025.csv", delim = ";"),

8 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2021_Partel_0Olago2025.csv", delim = ";"),

9 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2021_Parte2_0lago2025.csv", delim = ";"),

10 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2022_Partel_0Olago2025.csv", delim = ";"),

11 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2022_Parte2_01ago2025.csv", delim = ";"),

12 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2023_Partel_0lago2025.csv", delim = ";"),

13 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2023_Parte2_0lago2025.csv", delim = ";"),

14 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2024_Partel_0Olago2025.csv", delim = ";"),

15 readr::read_delim("D:/TCC/dados/HIST_PAINEL_COVIDBR_01ago2025/HIST_
PAINEL_COVIDBR_2024_Parte2_0l1ago2025.csv", delim = ";")

16 )

17

18 |covid_br_ts = covid_dataset |[>

19 dplyr::filter(regiao == "Brasil") |[>

20 dplyr::select(-2,-3,-4,-5,-6,-7) |>

21 dplyr::mutate (semana_epi = lubridate::epiweek(data)) |>

22 dplyr::relocate(semana_epi, .before = data) |[>

23 dplyr::select(-data, -semanaEpi) |[|>

24 dplyr::group_by(semana_epi) |>

25 dplyr::summarise(

26 casos_conf = sum(casosNovos),

27 obitos_conf = sum(obitosNovos)

28 ) 1>

29 tsibble::as_tsibble(index = semana_epi)

30

31 |HHHHSHHHSHHHEH

32 | set.seed (4390)

33




46

68
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# Amostrando indices de municipos via amostragem estratificada

casos_por_municipio = covid_dataset |[>
dplyr::filter(

estado == ,
is.na(codmun) == F,
data >= lubridate::ymd( ),
data <= lubridate::ymd( )
) 1>
dplyr::group_by(codmun, municipio) |[>
dplyr::summarise(total_casos = sum(casosNovos, na.rm = TRUE), .groups
= ) 1>

dplyr::filter(total_casos >= 10) [|> # remover municipios com menos de
10 casos

dplyr::mutate (

estrato = dplyr::case_when(
total _casos > 250 ~ ,
total_casos >= 100 ~ ,

total _casos >= 10 ~
)
) >
dplyr::group_by(estrato) |[>
dplyr::slice_sample(n = 13) |[|>
dplyr::ungroup ()

obitos_por_municipio = covid_dataset |[>
dplyr::filter(

estado == ,

is.na(codmun) == F,

data >= lubridate::ymd( ),

data <= lubridate::ymd( )
) >

dplyr::group_by(codmun, municipio) |[>
dplyr::summarise(total_obitos = sum(obitosNovos, na.rm = TRUE),
groups = ) 1>
dplyr::filter(total_obitos >= 1) [|> # remover municipios com menos de
5 6bitos
dplyr::mutate(
estrato = dplyr::case_when(
total_obitos > 20 ~ ,
total _obitos >= 10 ~ ,
total_obitos >= 5 ~ ,
total_obitos >= 1 ~
)
) 1>
dplyr::group_by(estrato) |[>
dplyr::slice_sample(n = 12) |[>




dplyr::ungroup ()

#1.
dados_obitos_mg =
dplyr::filter(

covid_dataset

:filter (codmun %in% obitos_por_municipio$codmun)
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Retirando dados por municipios amostrados

| >

) & data <= lubridate::ymd(

| >

lubridate::epiweek (data)) |>

.before = data) |[|>

| >

municipio) |>

estado == ,
data >= lubridate::ymd(
),
) 1>
dplyr:
dplyr::select(-regiao,
-estado,
-coduf ,
-codRegiaoSaude,
-nomeRegiaoSaude,
-populacaoTCU2019,
) 1>
dplyr::mutate (semana_epi =
dplyr::relocate (semana_epi,
dplyr::select(-data, -semanaEpi)
dplyr::group_by(semana_epi,
dplyr::summarise (

obitos_conf =

) 1>
dplyr::mutate (obitos_conf

conf)) |>
dplyr::ungroup () |>
dplyr::mutate (obitos_conf

,00) 1>
tsibble::as_tsibble(index

dados_casos_mg =
dplyr::filter (

estado == s
data >= lubridate::ymd(
),
) 1>
dplyr::select(-regiao,
-estado,
-coduf ,

covid_dataset

sum(obitosNovos)

dplyr::if _else(obitos_conf < 0, 0, obitos_

dplyr::if _else(obitos_conf >=0,obitos_conf

semana_epi, key = municipio)
| >

) & data <= lubridate::ymd(

-codRegiaoSaude,

-nomeRegiaoSaude,
-populacaoTCU2019,

) 1>
dplyr::filter(codmun %in% casos_por_municipio$codmun) |>
dplyr::mutate (semana_epi = lubridate::epiweek(data)) |[>
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120 dplyr::relocate (semana_epi, .before = data) |[>

121 dplyr::select(-data, -semanaEpi) |[>

122 dplyr::group_by(semana_epi, municipio) |[>

123 dplyr::summarise (

124 casos_conf = sum(casosNovos)

125 ) 1>

126 dplyr::mutate(casos_conf = dplyr::if_else(casos_conf < 0, 0, casos_

conf)) |>

127 dplyr::ungroup() |>

128 tsibble::as_tsibble(index = semana_epi, key = municipio)
129

130

131 |# 3.

132 |# Modelando Casos Confirmados - Via TSCV

134 | casos_mg_model_tscv = dados_casos_mg |>

135 tsibble::stretch_tsibble(.init = 48, .step = 1) |[>

136 fabletools::model (

137 arma = ARIMA(casos_conf),

138 nnetar = NNETAR(casos_conf),

139 ing_naive = INGARCH(casos_conf, algorithm = _ , distr =
),

140 ing_arma = INGARCH(casos_conf, algorithm = _to_ , distr

= ) s

141 ing_lasso = INGARCH(casos_conf , algorithm = _ , distr =
),

142 gla_arma = GLARMA(casos_conf, algorithm = _to_ , distr =
),

143 gla_naive = GLARMA(casos_conf, algorithm = _ _ s

distr = )

144 )

145

146

147 |## 3.1 - Hipotese de RMSE

148 | casos_mg_forecast_tscv = casos_mg_model_tscv | >

149 forecast(h = 1) |[>

150 accuracy (dados_casos_mg) |>

151 dplyr::filter(is.nan(RMSE) == F)

152

153

154 | casos_mg_forecast_tscv_raw = casos_mg_model_tscv |[|>

155 dplyr::select(arma, nnetar) |[>
156 dplyr::slice_head(n = 4) |>
157 forecast(h = 1)




161
162
163
164
165
166
167
168
169
170

178
179

180

181

193

194

195

196

197

117

casos_mg_tscv_estratos = casos_mg_forecast_tscv | >
dplyr::left_join(casos_por_municipio, by = ) 1>
dplyr::select(1,2,5, 14) |>
tidyr::pivot_wider (names_from = .model, values_from = RMSE)
tempo_casos_mg_forecast_tscv = microbenchmark(
dados_bench |>
fabletools::model (arma = ARIMA (casos_conf)),
dados_bench |>
fabletools::model(ing_naive = INGARCH(casos_conf, algorithm =
_ , distr = )),
dados_bench |[>
fabletools::model (ing_arma = INGARCH(casos_conf, algorithm = _
B , distr = D),
dados_bench |>
fabletools::model(ing_lasso = INGARCH(casos_conf , algorithm =
_ , distr = ),
dados_bench |>
fabletools::model(gla_arma = GLARMA(casos_conf, algorithm = _
_ , distr = )),
dados_bench |>
fabletools::model(gla_naive = GLARMA(casos_conf, algorithm = _
_ , distr = ),
times = 1)
H#
# Modelando Casos Confirmados - Via 008
casos_mg_model_oos = dados_casos_mg |>
dplyr::filter (semana_epi <= 48) |[>
fabletools::model (
arma = ARIMA (casos_conf),
nnetar = NNETAR(casos_conf),
ing_naive = INGARCH(casos_conf, algorithm = _ , distr =
),
ing_arma = INGARCH(casos_conf, algorithm = _to_ , distr
= ),
ing_lasso = INGARCH(casos_conf , algorithm = _ , distr =
),
gla_arma = GLARMA(casos_conf, algorithm = _to_ , distr =
),
gla_naive = GLARMA(casos_conf, algorithm = _ _ ,
distr = )
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198

199 | casos_mg_forecast_oss_raw = casos_mg_model_oos |>

200 forecast(h = 4)

201

202 | casos_mg_forecast_oss = casos_mg_forecast_oss_raw | >

203 accuracy (dados_casos_mg) |>

204 dplyr::filter (is.nan(RMSE) == F)

205

206

207 | casos_mg_oss_estratos = casos_mg_forecast_oss |[|>

208 dplyr::left_join(casos_por_municipio, by = ) >

209 dplyr::select(1,2,5, 14) |[>

210 tidyr::pivot_wider (names_from = .model, values_from = RMSE)

211

212

213

214 |# 4.

215 |# Modelando Obitos Confirmados - Via TSCV

216

217 |obitos_mg_model_tscv = dados_obitos_mg |>

218 tsibble::stretch_tsibble(.init = 48, .step = 1) [>

219 fabletools::model(

220 arma = ARIMA (obitos_conf),

221 nnetar = NNETAR(obitos_conf),

222 ing_naive = INGARCH(obitos_conf, algorithm = _ , distr =
),

223 ing_arma = INGARCH(obitos_conf, algorithm = _to_ , distr

= ),

224 ing_lasso = INGARCH(obitos_conf , algorithm = _ , distr =
),

225 gla_arma = GLARMA (obitos_conf, algorithm = _to_ , distr =
),

226 gla_naive = GLARMA(obitos_conf, algorithm = _ _ s

distr = )

227 )

228

229

230

231 |## 4.1 - Hipotese de RMSE

232 |obitos_mg_forecast_tscv = obitos_mg_model_tscv |>

233 forecast(h = 1) |>

234 accuracy (dados_obitos_mg) |>

235 dplyr::filter(is.nan(RMSE) == F)

236

237

238 |obitos_mg_tscv_estratos = obitos_mg_forecast_tscv |>

239 dplyr::left_join(obitos_por_municipio, by = ) 1>
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dplyr::select(1,2,5, 14) |[>

tidyr::pivot_wider (names_from = .model, values_from = RMSE)

# Modelando Obitos Confirmados - Via 0SS

obitos_mg_model_oos = dados_obitos_mg |>
dplyr::filter (semana_epi <= 48) |>
fabletools::model(
arma = ARIMA(obitos_conf),
nnetar = NNETAR(obitos_conf),

ing_naive = INGARCH(obitos_conf, algorithm = _ , distr =
),
ing_arma = INGARCH(obitos_conf, algorithm = _to_ , distr
= )’
ing_lasso = INGARCH(obitos_conf , algorithm = _ , distr =
),
gla_arma = GLARMA (obitos_conf, algorithm = _to_ , distr =
),
gla_naive = GLARMA (obitos_conf, algorithm = _ _ ,
distr = )
)
obitos_mg_forecast_oss_raw = obitos_mg_model_oos |>

forecast(h = 4)

obitos_mg_forecast_oss = obitos_mg_forecast_oss_raw [>

accuracy (dados_obitos_mg) |>

dplyr::filter(is.nan(RMSE) == F)

obitos_mg_oss_estratos = obitos_mg_forecast_oss |[|>
dplyr::left_join(obitos_por_municipio, by = ) 1>
dplyr::select(1,2,5, 14) |[>
tidyr::pivot_wider (names_from = .model, values_from = RMSE)

Listing .2 — Codifo utilizado para analise do tempo de execucao de cada modelo

## --- Definicdo de métodos e estratos ---
metodos = c( , , _ s _ s
- b -— b - )
estratos = c( s s )
## --- Inicializag8o da matriz 3D de tempos ---
tempos_execucao = array(NA, dim = c(length(metodos), 3, length(estratos)

),
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11 dimnames = list(

12 metodo = metodos,

13 repeticao = paste0("rep_", 1:3),
14 estrato = estratos

15 ))

16

17

18

19 |## --- Lista para facilitar iterag8o entre estratos ---
20 |dados_lista = list(baixo = dados_casos_mg_baixo,

21 medio = dados_casos_mg_medio,

22 alto = dados_casos_mg_alto)

23

24 |## - Matriz dos modelos

25

26 |modelos_estim_lista <- vector("list", length(metodos))

27 |names (modelos_estim_lista) <- metodos

28

29

30 |## --- Loop principal ---

31 |for (rep in 1:3) {

32 cat("\nIniciando repeticdo", rep, "...\n")

33

34 for (estrato in estratos) {

35 cat (", Estrato:", estrato, "\n")

36 dados = dados_listal[[estrato]l]

37

38 # ARIMA

39 t_0 = Sys.time()

40 modelos_estim_lista[["arma"]][[estrato]] = fabletools::model(

41 dados,

42 arma = ARIMA(casos_conf)

43 )

44 t_1 = Sys.time()

45 tempos_execucao["arma", rep, estrato] = as.numeric(t_1 - t_0O, units
= "secs"

46

47 # NNETAR

48 t_0 = Sys.time()

19 modelos_estim_lista[["nnetar"]][[estrato]] = fabletools::model (

50 dados,

51 nnetar = NNETAR(casos_conf)

52 )

53 t_1 = Sys.time()

54 tempos_execucao ["nnetar", rep, estrato] = as.numeric(t_1 - t_O,

units = "secs"
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# GLARMA (arma_to_glarma)
t_0 = Sys.time ()
modelos_estim_listal[["gla_arma"]][[estrato]] = fabletools::model(

dados,

gla_arma = GLARMA(casos_conf, algorithm "arma_to_glarma", distr

= "poisson")
)
t_1 = Sys.time ()

tempos_execucao["gla_arma", rep, estrato] = as.numeric(t_1 - t_O,

units = "secs"

# GLARMA (naive_search_glarma)
t_0 = Sys.time ()
modelos_estim_lista[["gla_naive"]][[estrato]] = fabletools::model(

dados,

gla_naive = GLARMA (casos_conf, algorithm "naive_search_glarma",
distr = "poisson')

)
t_1 = Sys.time ()

tempos_execucao["gla_naive'", rep, estratol] as.numeric(t_1 - t_O,

units = "secs"

# INGARCH (arma_to_ingarch)
t_0 = Sys.time ()

modelos_estim_listal[["ing_arma"]] [[estrato]l] fabletools::model(

dados,
ing_arma = INGARCH(casos_conf, algorithm = "arma_to_ingarch",
distr = "poisson')
)
t_1 = Sys.time ()
tempos_execucao["ing_arma", rep, estrato] = as.numeric(t_1 - t_O,
units = "secs"

# INGARCH (naive_search)
t_0 = Sys.time ()

modelos_estim_lista[["ing_naive"]][[estrato]] = fabletools::model(
dados,
ing_naive = INGARCH(casos_conf, algorithm = "naive_search", distr

= "poisson")
)
t_1 = Sys.time ()
tempos_execucao["ing_naive'", rep, estrato] = as.numeric(t_1 - t_O,

units = "secs"

# INGARCH (post_lasso)
t_0 = Sys.time ()

modelos_estim_lista[["ing_lasso"]][[estrato]] = fabletools::model(
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95 dados ,

96 ing_lasso = INGARCH(casos_conf, algorithm = "post_lasso", distr =
"poisson")

97 )

98 t_1 = Sys.time ()

99 tempos_execucao["ing_lasso", rep, estrato] = as.numeric(t_1 - t_O,

units = "secs"

100 }

101 |}

102

103 | tempos_estim_spec = tempos_execucao |>

104 as_tibble(rownames = "metodo") |>

105 pivot_longer (-metodo) |>

106 mutate (estrato = stringr::str_extract(name, " (7<=\\.).+$"),

107 rep = stringr::str_extract(name, "(7<=rep_)[0-9]1+")) |[|>

108 select (-name) |[>

109 group_by(metodo, estrato) |>

110 summarise (tempo = mean(value))

111

112 | tempos_estim_spec |[>

113 pivot_wider (names_from = metodo, values_from = tempo) |[>
114 relocate (nnetar, .before = gla_arma)

115

116

117 |# Definir métodos e estratos

118 |metodos = c("arma", "nnetar", "gla_arma", "gla_naive',
119 "ing_arma", "ing_naive", "ing_lasso")

120 |estratos = c("baixo", "medio", "alto")

121

122 |# Inicializar array para armazenar tempos de previsio (método G

repetigdo E estrato)

123 | tempos_predict = array(NA,

124 dim = c(length(metodos), 3, length(estratos)),

125 dimnames = list(metodos, pasteO('"rep_", 1:3),
estratos))

126

127

128 |horizonte = 1 # nimero de passos & frente para forecast

129

130 |for (rep in 1:3) {

131 cat ("\nRodandoprevisdo -, repetigdo", rep, "...\n")
132

133 for (e in estratos) {

134 cat (" Estrato:", toupper(e), "\n")

135

136 for (m in metodos) {

137 t_0 = Sys.time ()
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138 modelos _estim_listal[[m]][[el] |> forecast(h = horizonte)
139 t_1 = Sys.time ()

140

141 tempos_predict[m, rep, el = as.numeric(t_1 - t_0, units = )
142 }

143 }

144 |}

145

146 | tempos_predict_spec = tempos_predict |[>

147 as_tibble(rownames = ) >

148 pivot_longer (-metodo) |[>

149 mutate (estrato = stringr::str_extract (name, $"),

150 rep = stringr::str_extract (name, _ ) >

151 select (-name) |[|>

152 group_by(metodo, estrato) |[>

153 summarise (tempo = mean(value))

154

155 | tempos_predict_spec |>

156 pivot_wider (names_from = metodo, values_from = tempo) |[>
157 relocate (nnetar, .before = gla_arma)

158

160 |# Loop de 3 repetigdes
161 [for (rep in 1:3) {

162 cat ( , Tep, )
163

164 # ———mmm - ESTRATO BAIX0 ----------

165 cat ( )

166

167 t_0 = Sys.time(); modelos_estim_lista$arma$baixo [|> forecast(h = 1); t

_1 = Sys.time ()

168 tempos_predict [ , rep, ] = as.numeric(t_1 - t_0, units =
)
169
170 t_0 = Sys.time(); modelos_estim_lista$nnetar$baixo |> forecast(h = 1);

t_1 = Sys.time ()

171 tempos_predict [ , rep, ] = as.numeric(t_1 - t_0, units =
)

172

173 t_0 = Sys.time(); modelos_estim_lista$gla_arma$baixo |> forecast(h =
1); t_1 = Sys.time()

174 tempos_predict [ _ , rep, ] = as.numeric(t_1 - t_0, units
= )

175

176 t_0 = Sys.time(); modelos_estim_lista$gla_naive$baixo |> forecast(h =

1); t_1 = Sys.time()

177 tempos_predict [ _ , rep, ] = as.numeric(t_1 - t_O,
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units = )
178
179 t_0 = Sys.time(); modelos_estim_lista$ing_arma$baixo |> forecast(h =
1); t_1 = Sys.time()
180 tempos_predict [ _ , rep, ] = as.numeric(t_1 - t_O, units
= )
181
182 t_0 = Sys.time(); modelos_estim_lista$ing_naive$baixo |> forecast(h =
1); t_1 = Sys.time()
183 tempos_predict [ _ , rep, 1 = as.numeric(t_1 - t_O,
units = )
184
185 t_0 = Sys.time(); modelos_estim_lista$ing_lasso$baixo |> forecast(h =
1); t_1 = Sys.time()
186 tempos_predict [ _ , rep, ] = as.numeric(t_1 - t_O,
units = )
187
188 I et ESTRATO MEDIQ ----------
189 cat ( )
190
191 t_0 = Sys.time(); modelos_estim_lista$arma$medio [> forecast(h = 1); t
_1 = Sys.time ()
192 tempos_predict [ , rep, ] = as.numeric(t_1 - t_O0, units =
)
193
194 t_0 = Sys.time(); modelos_estim_lista$nnetar$medio |> forecast(h = 1);
t_1 = Sys.time()
195 tempos_predict [ , rep, ] = as.numeric(t_1 - t_0, units =
)
196
197 t_0 = Sys.time(); modelos_estim_lista$gla_arma$medio |> forecast(h =
1); t_1 = Sys.time()
198 tempos_predict [ _ , rep, ] = as.numeric(t_1 - t_0, units
= )
199
200 t_0 = Sys.time(); gla_naive_medio_estim |> forecast(h = 1); t_1 = Sys.
time ()
201 tempos_predict [ _ , rep, ] = as.numeric(t_1 - t_O,
units = )
202
203 t_0 = Sys.time(); ing_arma_medio_estim |> forecast(h = 1); t_1 = Sys.
time ()
204 tempos_predict [ _ , rep, ] = as.numeric(t_1 - t_0, units
= )
205
206 t_0 = Sys.time(); ing_naive_medio_estim |> forecast(h = 1); t_1 = Sys.
time ()
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237

tempos_predict["ing_naive'", rep, "medio"] = as.numeric(t_1
units = "secs"

t_0 = Sys.time(); ing_lasso_medio_estim |> forecast(h = 1);
time ()

tempos_predict["ing_lasso", rep, "medio"] = as.numeric(t_1

units = "secs"

# —--------- ESTRATO ALTO ------

cat (" Estrato: ALTO\n")

t_0 = Sys.time(); arma_alto_estim |> forecast(h = 1); t_1

tempos_predict["arma", rep, "alto"] = as.numeric(t_1 - t_0

secs"

t_0 = Sys.time(); nnetar_alto_estim |> forecast(h = 1); t_

>

>

1

O
tempos_predict["nnetar", rep, "alto"] = as.numeric(t_1 - t_
”SeCS”

t_0 = Sys.time(); gla_arma_alto_estim |> forecast(h = 1);

time ()
tempos_predict["gla_arma'", rep,

= "secs"

"alto"] = as.numeric(t_1 -

t_0 = Sys.time(); gla_naive_alto_estim |> forecast(h = 1);

time ()

tempos_predict["gla_naive", rep, "alto"] = as.numeric(t_1
= "secs"

t_0 = Sys.time(); ing_arma_alto_estim |> forecast(h = 1);
time ()

tempos_predict["ing_arma", rep, "alto"] = as.numeric(t_1 -
= "secs"

t_0 = Sys.time(); ing_naive_alto_estim |> forecast(h = 1);
time ()

tempos_predict["ing_naive", rep, "alto"] = as.numeric(t_1

= "secs"

t_0 = Sys.time(); ing_lasso_alto_estim |> forecast(h = 1);

time ()
tempos_predict["ing_lasso", rep,

= "secs"

## Tempo de estimagdo do modelo

"alto"] = as.numeric(t_1

0

t_

t

t_

t_

t

0

1

_0
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>

= Sys.

>

Sys.time ()
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B

1

_0

t_

t_

1

t_

1

t_

t_

0

1

t_

t_

1

t_

Sy

un

B

0,

B

0,

0,

s.time

its =

Sys.

units

Sys.

units

Sys.

units

Sys.

units

Sys.

units




126

238 |# Definir métodos e inicializar matriz de tempos de previsdo

239 |metodos = c("arma", "nnetar", "gla_arma", "gla_naive'",

240 "ing_arma", "ing_naive", "ing_lasso")

241

242 | tempos_predict = matrix(NA, nrow = length(metodos), ncol = 3,

243 dimnames list (metodos, pasteO("rep_", 1:3)))

245 |# Loop de 3 repetigdes
246 |for (rep in 1:3) A{

247

248 cat ("\nRodando previsdo -, repetigdo", rep, "...\n")
249

250 # ARIMA

251 t_0 = Sys.time ()

252 arma_baixo_estim |> forecast(h = 1)

253 t_1 = Sys.time ()

254 tempos_predict["arma", rep] = as.numeric(t_1 - t_0, units = "secs"

256 # NNETAR

257 t_0 = Sys.time()

258 nnetar_baixo_estim |> forecast(h = 1)

259 t_1 = Sys.time ()

260 tempos_predict["nnetar", rep] = as.numeric(t_1 - t_0, units = "secs'

261

262 # GLARMA (arma_to_glarma)

263 t_0 = Sys.time()

264 gla_arma_baixo_estim |> forecast(h = 1)

265 t_1 = Sys.time ()

266 tempos_predict["gla_arma", rep] = as.numeric(t_1 - t_O0, units = "secs"
)

267

268 # GLARMA (naive_search_glarma)

269 t_0 = Sys.time ()

270 gla_naive_baixo_estim |> forecast(h = 1)

271 t_1 = Sys.time ()

272 tempos_predict["gla_naive", rep] = as.numeric(t_1 - t_0, units = "secs
")

273

274 # INGARCH (arma_to_ingarch)

275 t_0 = Sys.time ()

276 ing_arma_baixo_estim |> forecast(h = 1)

277 t_1 = Sys.time()

278 tempos_predict["ing_arma", rep] = as.numeric(t_1 - t_0, units = "secs"
)

279

280 # INGARCH (naive_search)
281 t_0 = Sys.time ()




ing_naive_baixo_estim
t_1 = Sys.time ()
tempos_predict [

)

- >

# INGARCH (post_lasso)
t_0 = Sys.time ()

ing_lasso_baixo_estim
t_1 = Sys.time ()
tempos_predict [

)

- >

tempo_casos_mg_forecast_tscv
dados_bench |>

fabletools::model (arma =
dados_bench |[>

fabletools::model(ing_nai

_ , distr =

dados_bench |>

fabletools::model(ing_arma =

distr =

dados_bench |[>
fabletools::model(ing_las
_ , distr =

dados_bench |>

fabletools::model(gla_arma =

, distr =

dados_bench |>
fabletools::model(gla_nai
distr

- B

times = 1)

|> forecast(h = 1)

rep] = as.numeric(t_1 - t_0, units =
|> forecast(h = 1)
rep] = as.numeric(t_1 - t_0, units =
= microbenchmark (
ARIMA (casos_conf)),
ve = INGARCH(casos_conf, algorithm =
)),
INGARCH(casos_conf, algorithm =
),
so = INGARCH(casos_conf , algorithm =
),
GLARMA (casos_conf, algorithm =
D),
ve = GLARMA (casos_conf, algorithm =

= )),

127




	Folha de rosto
	FOLHA DE APROVAÇÃO
	Dedicatória
	AGRADECIMENTOS
	Epígrafe
	RESUMO
	ABSTRACT
	LISTA DE ILUSTRAÇÕES
	LISTA DE TABELAS
	LISTA DE ABREVIATURAS E SIGLAS
	SUMÁRIO
	INTRODUÇÃO
	SÉRIES TEMPORAIS
	JFSALVANDOTODOS E PREVISÕES EPIDEMIOLÓGICAS
	DADOS E MODELOS TEMPORAIS DE CONTAGEM
	SOFTWARE R E PACOTES ESTATÍSTICOS
	OBJETIVOS E ORGANIZAÇÃO

	DEFINIÇÕES DOS MODELO ORIENTADOS A OBSERVAÇÕES
	MODELOS LINEARES GENERALIZADOS
	GLARMA - AUTORREGRESSIVO DE MÉDIA MÓVEIS LINEAR GENERALIZADO
	DISTRIBUIÇÕES PARA A VARIÁVEL RESPOSTA
	ESCOLHA DOS TERMOS AR E MA
	CÁLCULO DE PREVISÕES

	INGARCH - HETEROCEDEDASTICIDADE CONDICIONAL AUTORREGRESSIVO GENERALIZADO
	DISTRIBUIÇÕES PARA A VARIÁVEL RESPOSTA
	ESCOLHA DOS TERMOS AR E MA
	CÁLCULO DE PREVISÕES


	PACOTE
	PACOTES DE SÉRIES TEMPORAIS NO R
	PIPELINE DE DADOS
	ESTRUTURA DO PACOTE
	IMPLEMENTAÇÃO INGARCH
	INGARCH()
	fitted()
	forecast()
	glance()
	residuals()
	tidy()

	IMPLEMENTAÇÃO GLARMA
	GLARMA()
	fitted()
	forecast()
	glance()
	residuals()
	tidy()

	DISPONIBILIZAÇÃO E IDENTIDADE VISUAL

	ALGORITMOS PARA AUTOMATIZAÇÃO DE MODELAGEM
	ALGORITMO PARA SELEÇÃO AUTOMÁTICA DE DISTRIBUIÇÃO
	ALGORITMOS PARA BUSCA AUTOMÁTICA DE ORDEM DE PARÂMETROS
	MÉTODO NAIVE-SEARCH
	MÉTODO ARMA-BASED
	MÉTODO VIA Post-LASSO
	COMENTÁRIOS SOBRE OS MÉTODOS

	ALGORITMO PARA BUSCA DE MELHOR PREVISÃO
	MÉTRICAS DE AVALIAÇÃO
	MÉTODOS DE AVALIAÇÃO DE DESEMPENHO PREDITIVO DE SÉRIES TEMPORAIS
	BUSCANDO E AVALIANDO O MELHOR MODELO
	BUSCA DE ORDEM DE PARÂMETROS
	NAIVE-SEARCH-FORECAST
	Tri-EVAL




	APLICAÇÃO E RESULTADOS
	DADOS UTILIZADOS
	HIPÓTESES
	RESULTADOS
	CASOS CONFIRMADOS
	ÓBITOS
	AVALIAÇÃO TEMPO DE EXECUÇÃO DE CADA MODELO

	ANÁLISE FINAL DAS HIPÓTESES

	POPULARIDADE E PLANOS FUTUROS
	CONCLUSÃO
	REFERÊNCIAS
	APÊNDICE A – Código utilizado para aplicação

