Forecast a model from the fable package
forecast.INGARCH.Rd
Produces forecasts from a trained model.
Arguments
- object
A model for which forecasts are required.
- new_data
Tsibble, it has to contains the time points and exogenous regressors to produce forecasts for.
- ...
Other arguments passed to methods
Details
Predict future observations based on a fitted GLM-type model for time series of counts. For 1 step ahead, it returns parametric forecast, based on the 'distr' param especified distribution, for multiples steps forecast, the distribution is not know analytically, so it uses a parametric bootstrap
Examples
# 1 step ahead parametric forecast
tsibbledata::aus_production |>
fabletools::model(manual_ing = INGARCH(Beer ~ pq(1,1) + PQ(1,1))) |>
dplyr::select(manual_ing) |>
fabletools::forecast(h = 1)
#> # A fable: 1 x 4 [1Q]
#> # Key: .model [1]
#> .model Quarter Beer .mean
#> <chr> <qtr> <dist> <dbl>
#> 1 manual_ing 2010 Q3 Pois(411) 411.
# Multiples steap ahead parametric bootstrap forecast
tsibbledata::aus_production |>
fabletools::model(manual_ing = INGARCH(Beer ~ pq(1,1) + PQ(1,1))) |>
dplyr::select(manual_ing) |>
fabletools::forecast(h = 4)
#> # A fable: 4 x 4 [1Q]
#> # Key: .model [1]
#> .model Quarter Beer .mean
#> <chr> <qtr> <dist> <dbl>
#> 1 manual_ing 2010 Q3 sample[1000] 410.
#> 2 manual_ing 2010 Q4 sample[1000] 411.
#> 3 manual_ing 2011 Q1 sample[1000] 409.
#> 4 manual_ing 2011 Q2 sample[1000] 407.